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Environmental Sequence Stratigraphy (ESS)
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Best Practices for Environmental Site Management:
A Practical Guide for Applying Environmental Sequence
Stratigraphy to Improve Conceptual Site Models
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Very useful tools for interpretation
and site conceptual models

Not as easy to apply guantitatively

Groundwater models that
incorporate high-resolution
stratigraphy are challenging (and
expensive) to construct

Key limitation: What is the
maximum detail of interpretation
supported by the data?

Other geologic disciplines struggle
with the same issues
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Dominguez sequence aquifer ESS *Key tool: CPT & EC Logs
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ESTCP Project ER21-5226

#HSERDP {ESTCP

Fairchild AFB

; Wright-Patterson AFB
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nerical Models from the MNe - JB MDL
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Objective

Technology Description

https://www.serdp-estcp.org/projects/details/3b222eba-f922-
4cc9-9cle-c6f6701afdd3/er21-5226-project-overview

(or search for ER21-5226 on Google)
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An Important (and Timeless Tool): Structural Contours

1. 5. AEGLOGICAL SUNNEY

BULLETIS €35 PLATE XUV

From: Hewett and Lupton (1917) Anticlines in the Southern Part of
the Big Horn Basin, Wyoming. USGS Bulletin 656
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. It is a very simple process to convert well constructed graphical structural
contours to digital surfaces using modern software (e.g., Surfer, ArcGIS)




Joint Base McGuire-Dix-Lakehurst (MDL)

From Colin Plank, Burns & McDonnell
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JBMDL: Framework Modeling

1. Build 3D framework in LeapFrog

2. Create portable structural contours (Surfer Grids)

Digital Elewation Model (Ground Surface) Tap Manasguan
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JBMDL: Framework Modeling =

Framewor Visual Modflow
FLEX

Cohansey Formation
Kirkwood Formation
Manasquan Formation
Vincentown Formation
Hornertown Formation
Navesink Formation
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JBMDL: Boundary Conditions

Streams and Rivers:

Digitized from USGS National Map Hydrography

Mostly gaining streams: modeled as DRN boundary condition

DRN elevation = high resolution Digital Elevation Model value

Conductance per unit area = 100 1/day; Actual conductance proportional to cell
area intersected by stream (assigned algorithmically by Visual Modflow)

Finite Difference

MOdﬂ ow Model Visual Modflow
FLEX

Recharge

i

6infyr. g

LAS: 272 in/yr

9in/yr

Assigned based on which formation is outcropping except for:
(1) Impervious areas
(2) LAS project — treated wastewater recharge

fhts



Finite Difference Modflow Model: JBMDL odowiodl g

3. Use structural contours to build finite difference MODFLOW model A N

[J Cohansey Formation M Kirkwood Formation B Manasquan Formation

B Vincentown Formation M Hornertown Formation M Navesink Formation

B Mt. Laurel Formation
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Unstructured Grid Model: JBMDL oo 6

GMS

Same grid size, but using USG explicit pinch-outs A A

[ Cohansey Formation [ Kirkwood Formation B Manasquan Formation
M Vincentown Formation M Hornertown Formation B Navesink Formation

B Mt. Laurel Formation
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JBMDL: Preliminary Calibration

Modflow USG

Model
Finite Difference

Modflow Model Visual Modflow
FLEX

Computed vs, Observed Values
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Modeling for Wright-Patterson AFB
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P Moderately complex geology:

Glacial valley incised into Paleozoic platform
carbonates.

Glacial valley filled with diamictons interbedded with
lacustrine / other water lain sediments.
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WPAFB: Framework Modeling

Huffman Dam
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Finite Difference Modflow Model:

3D Grid Head
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Unstructured Grid Modflow Model:
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Relationship between “NAPL” recoverability
and geologic facies (Petroleum industry)

Strandplain / wave-dominated delta

Large barrier bars DRIVE
Large reefs and atolls O Strong (WD)
Fluvial/wave-modified deltas O Moderate
Carbonate ramps A Weak (SG)

Backbarrier
Carbonate Platform n =450
Wave-dominated deltas

Fan delta (and sand-rich submarine fans)
Fluvial systems

Fluvially-dominated deltas
Restricted-platform carbonates
Platform-margin carbonates

Turbidites

Mud-rich submarine-fan turbidites

0 20 40 60 80 100

% Unrecovered mobile oil

From Tyler and Finley, 1992.




Numerical experiment: contaminant transport

Discretize an ESS panel to Regular 2D Grid, with 6-inch cell size

Apply basic constant head boundary conditions

Apply constant upgradient source, 1 mg/L PCE for 5
years; clean water for 3 years

vV v VvYy

Model section (transect) is orthogonal to plume axis

PCE plume after 8 years:

Sands (net)
K =1-10 ft/d
/day 100 1 | { I i
ES=—=— — ——
su i - | .

K < 0.1 ft/day ———
| Constant Constant|

head head ]
-50 T T T T T T T T T T
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From Brandenburg et al., 2019. 0.0 0.5 1.0
mg/L



Hydrodynamic dispersion

Dilution due
to displersion
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After Freeze and Cherry, 1979.

25 50m

Conﬂnuous_ source
of contamination
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Steady—state flow

o -
= T
ar=0.05m
\k—;ﬁ/-/
\ / e =10m
ar=0.5m

Nl
/ 2 =100m

:11-=5m

50 100m

After Freeze and Cherry, 1979 and references
therein.

' Dispersion of a contaminant during transport in a shallow
groundwater flow system. Porosity 30% ; hydraulic conductivity
0.5 m/day; /e, = 20; transport time 15 years; concentration
contoursat £/Cp = 0.9, 0.7, 0.5, 0.3, and 0.1 (after Pickens and
Lennox, 1876).

a, = Longitudinal dispersivity
ayt = Transverse dispersivity
Transport time =15 years
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Lenticular \ Wavy \ Flaser

Flow-based upscaling

High resolution gridded model

Tidal/deltaic sands with Flaser bedding: " Ky Ky A K,
generated in SBED
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From Ringrose and Bentley, 2015
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ESTCP project: G3 stratigraphic/groundwater flow models

Matrix Diffusion Semi-analytical method (Muskus and Falta, 2018)

Tank and numerical models (Chapman et al., 2012)
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Conclusions

Reviewed ESS methods and examples

Instructive to consider oil and gas origins of ESS

Scale of observations/interpretations/models: always a challenge
Key challenge: converting ESS details to parameters like dispersivity

Flow-based upscaling: one potential path forward
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Environmental Sequence Stratigraphy in Numerical
Groundwater Models

Background/Objectives

Recent advances in borehole logging and visualization software combined with more rigorous evaluation of depositional environments have made sophisticated subsurface
geologic interpretation and models accessible to the environmental consulting industry. However, in practice, conceptual site models are still very often based on generalized
and often arbitrarily subdivided stratigraphy. Relationships between stratigraphy and non-stratigraphic features such as bedrock unconformities and anthropogenic construction
fill are often conceptually challenging in this layer-based framework. Interpretation and model improvement are important in characterizing the geological controls of complex
processes such as biological and abiotic degradation pathways. What is less defined is the added value for including detailed stratigraphy in numerical groundwater models.

Approach/Activities

Stratigraphic interpretations and related groundwater models for contaminated groundwater sites are reviewed in the context of informing remedial design and scope. The
value of information is assessed by comparing the potential influence of using a more detailed stratigraphic model compared to a simpler layered geologic model. We evaluate
performance of different numerical discretization schemes for representing complex stratigraphy and discuss efficient workflows for converting to scale-appropriate numerical
models.

Results/Lessons Learned

Application of detailed stratigraphic analysis offers many benefits to contaminated site management. Of these, more accurate site conceptualization is arguably the most
valuable. The ability to develop and communicate a geologically consistent interpretation at the correct resolution adds context for heterogeneous data and uncertainty inherent
in standard environmental projects. An understanding of the maximum level of detail that is appropriate, and their representation in numerical models is critical to maximizing

this value.
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