

# Monitoring of Subsurface Contaminant Remediation at the former Moab Uranium Mill Tailings site by In-Situ Nuclear Magnetic Resonance

<u>Darya Morozov</u><sup>1</sup>, Cristina McLaughlin<sup>1</sup>, Ken Williams<sup>2</sup>, and Dave Walsh<sup>1</sup>

¹Vista Clara Inc., Mukilteo, WA, USA; ² Lawrence Berkeley National Laboratory, USA

2023 Bioremediation Symposium Austin, Tx

#### Introduction:

- Advancements in remediation engineering have delivered innovative strategies for cleanup incorporating biological, geochemical, and hydrogeologic processes.
- ☐ Efficient and safe monitoring of environmental remediation processes of soil and groundwater is challenging
- Conventional methods rely largely on direct well fluid sampling and soil coring.
- ☐ The need to measure pore-scale properties of the formation along the remediation process

NMR approaches can be used to efficiently monitor remediation processes in-situ



# Nuclear Magnetic Resonance (NMR)



Direct Detection of Hydrogen Nuclei

Medical MRI

NMR Geophysics



# Hydrologic Properties from NMR



#### NMR Directly Measures

- Water Content, Porosity
- NMR Relaxation Times, Relative pore size



# Hydrologic Properties from NMR



#### NMR Directly Measures

- Water Content, Porosity
- NMR Relaxation Times, Relative pore size

#### **NMR Estimates**

- Pore Size Distribution, Bound/Mobile Porosity
- Hydraulic Conductivity



# Previous work using NMR

#### In-situ detection of biofilm in porous media







# Previous work using NMR

#### In-situ detection of microbially induced calcite

Borehole NMR logging sensor







# NMR monitoring results 30 25 20 15 0 50 100 150 200 250 300 350 400 450 Time (ms) --- Day 2 Day 4 --- Day 8 Day 8

Water Content (%)

Kirkland et al. 2015

T<sub>2</sub> (ms)



# Previous work using NMR

#### NMR Monitoring of Geochemical and Mineralization Changes

- ☐ Hypothesis: Formation of mixed-valence minerals, such as magnetite, over time would reduce the NMR relaxation time decreasing the hydraulic conductivity
- ☐ Unattended NMR logging system for 15 months at Rifel, CO.





- No change in hydraulic conductivity was detected over time
- ☐ The data are repeatable and stable (low variance) over the very long 15-month interval.





## Moab UMTRA





#### Hydroxyapatite precipitation reaction

microbes

Calcium-Citrate + Sodium-phosphate hydroxyapatite

[Ca6(PO4)10(OH)2]

- Permeable barriers for containment of radioactive contaminants and heavy metals
- ☐ Strongly absorbs uranium, strontium, lead, and selenium
- Low water solubility
- ☐ High stability under reducing and oxidizing conditions
- ☐ Available and low cost.



#### Lab experiments with silica sand



- ☐ Dart NMR probe was used for NMR monitoring
- ☐ Significant change in water layer above the silica sand during the first week, due to massive gas formation
- ☐ Mobile water content decreasing and capillary water increasing over time
- ☐ White precipitation is observed between and on top of the silica sand after three weeks into the monitoring











- $\blacksquare$  Massive gas (CO<sub>2</sub>) build up during the first week of monitoring
- ☐ Hydroxyapatite and iron sulfide (FeS) minerals precipitations happen simultaneously over time



minerals

<u>Day 0</u>



**Day 8** 



<u>Day 15</u>



**Day 29** 



- $\square$  Massive gas (C0<sub>2</sub>) build up during the first week of monitoring
- ☐ Hydroxyapatite and iron sulfide (FeS) minerals precipitations happen simultaneously over time







- ☐ Helios NMR core analyzer was used for monitoring
- ☐ Mobile water content decreasing and capillary water increasing over time, associated with apatite formation
- ☐ Significant drop in hydraulic conductivity during the first week



# Remote NMR Monitoring System Overview





#### Remote NMR Monitoring System Overview





# Injection of calcium-citrate and sodium-phosphate









## Results of Remote NMR monitoring-before injections





## Results of Remote NMR monitoring-After injections





24 Feb 2023 -baseline
02 Mar 2023- 1st injection
16 Mar 2023- 2nd injection
05 Apr 2023- 3rd injection

#### MW2



- ☐ Significant decrease in mobile water content over time
- ☐ Significant increase in capillary water content over time
- ☐ Dramatic decrease in hydraulic conductivity



# Results of Remote NMR monitoring

#### MW3

24 Feb 2023 -baseline 02 Mar 2023- 1st injection 16 Mar 2023- 2nd injection 05 Apr 2023- 3rd injection



lacktriangle No significant changes were observed over time in this well



# Remote NMR Monitoring System Evacuation

May 2nd, 2023 Evacuation day



May 3rd, 2023 Flooding, 2 feet water around the wells





#### Conclusions

# Hydrogeological NMR measurements provide unambiguous information on hydrogeological properties:

- Direct detection and measurement of water content
- Relative pore size distribution
- Bound and mobile water fractions
- Estimation of hydraulic conductivity and transmissivity

#### NMR logging technology can provide:

- High resolution site characterization
- Efficient monitoring of remediation processes in-situ
- Remote, unattended long-term monitoring provides a very large cost savings when compared with repeated physical mobilizations to the site



# Thank you!

#### Acknowledgements

This work was supported by US Department of Energy Grant Number DE-SC0020798.. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US Department of Energy.

#### Special thanks to:

Moab UMTRA personnel

daryamorozov@vista-clara.com

