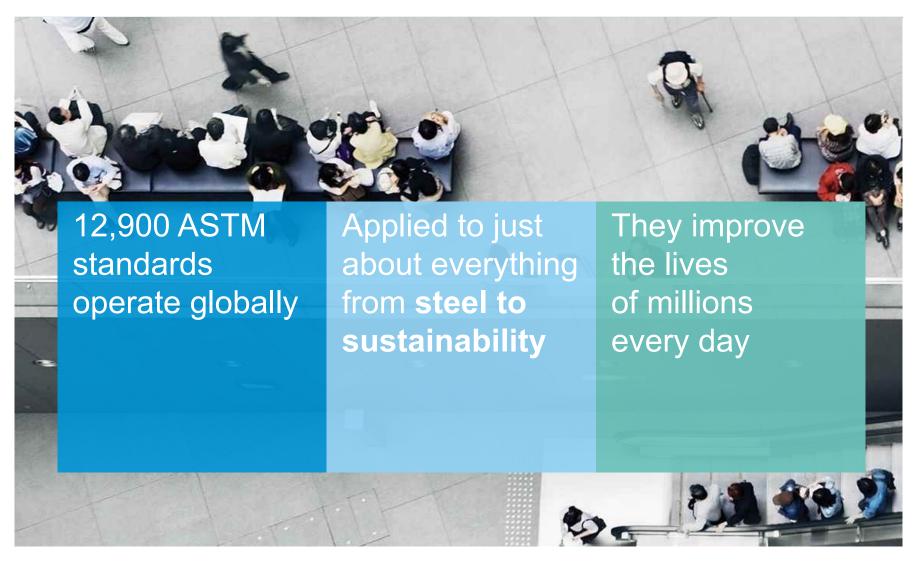


ASTM Standard Guide for

ASTM INTERNATIONAL Helping our world work better

Application of Molecular Biological Tools to Assess Biological Processes at Contaminated Sites


www.astm.org

Stephanie Fiorenza Arcadis

on Bioremediation and Sustainable Environmental Technologies
Austin, Texas, May 11, 2023

Helping Our World Work Better



Over a Century of Openness

How ASTM Works

- Principles of openness and voluntary consensus
- Experts, individuals, organizations, academia, governments, trade associations, consultants and consumers
- Over 30,000 members from 160 countries exchange expertise and knowledge
- Transparent process open to anyone, anywhere
- Timely and relevant. Fully representative of sectors. An aid to innovation

Committee E50

Environmental Assessment, Risk Management, and Corrective Action

- One of ASTM's 148 Main Committees
- Home of RBCA Risk Based Corrective Action and
 - **ESA** Environmental Site Assessment
- Has 7 subcommittees:
 - Storage Tanks
 - Real Estate Assessment and Management
 - Beneficial Use
 - Corrective Action
 - Risk Management
 - Climate and Community
 - Biological Effects and Environmental Fate

ASTM Molecular Biological Tools Team

Co-Leads

Trent Key	Andrew Madison	Stephanie Fiorenza
MBT Overview, Application, Selection	Sampling Methods	Overall ASTM process

Authors

Carolyn Acheson (USEPA), Phil Dennis (SiREM), Sandra Dworatzek (SiREM), Stephanie Fiorenza (Arcadis), Barry Harding (AECOM), Paul Hatzinger (Aptim), Monica Heintz (Arcadis), Eleanor Jennings (Parsons), Trent A. Key (ExxonMobil), Ravi Kolhatkar (Chevron), Tamzen MacBeth (CDM Smith), Erin Mack (Corteva), Andrew Madison (WSP), Aaron Peacock (Microbac), Sam Rosolina (Microbial Insights), Nicolas Tsemetzis (Shell), Claudia Walecka-Hutchinson (Dow), Steve Zeiner, (Environmental Standards)

5/8/2023

© ASTM International

Required Sections of an ASTM Standard

- Scope what the standard covers
- Referenced Documents
- Terminology
- Significance and Use why the standard is important; how the standard is to be used

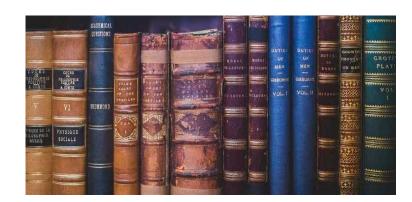
These first four sections are publicly available on www.astm.org

Scope:

- Presents a framework for applying molecular biological tools to in situ remediation.
- Develops a consistent way to apply MBTs.

Status of MBT Standard Guide from ASTM International

Emphasizes nucleic acid-based tools.


E3354 - 22

Referenced Documents:

ASTM Methods

• EPA Methods

Other published papers and sources

Terminology:

- Thirty-eight terms specific to the application of MBTs are defined and discussed
- Includes Next Generation Sequencing, qPCR, RT-qPCR
- Provides an overview of key terms in this rapidly developing field

3.2.19 molecular biological tools (MBTs), n—a suite of molecular genetic analyses that can be used to characterize and evaluate microorganisms and their related activity.

3.2.19.1 Discussion—MBTs may also be referred to as or included in Environmental Molecular Diagnostics (EMDs).

Significance and Use:

- Aids managers of contaminated sites in the selection and application of MBTs
- Presents the limitations of methods
- Describes quantitative techniques to determine biological processes, including a summary comparison table

Significance is What MBTs Tell Us

What is the concentration of contaminant degraders?

qPCR

qPCR Arrays

Is biodegradation occurring?

Stable Isotope Probing (SIP)

Compound
Specific
Isotope
Analysis
(CSIA)

What is the community structure?

Next Generation Sequencing What treatment strategy should be selected?

Microcosms and In Situ Microcosms (ISMs)

Source information: Microbial Insights, Inc. unless otherwise stated

Table 1. Overview of Molecular Biological Tools

MBT	Type of Data	Advantages	Disadvantages
Quantitative Polymerase Chain Reaction	Presence/absence of a gene	Culture independent	Positive results depend upon sequence similarity to a known gene
		Sensitive	Does not give information on activity
		Results easy to understand	Does not differentiate between live and dead cell DNA
		Commercially available	

Table 1. Overview of Molecular Biological Tools

Additional tools covered:

RT-PCR
16S rRNA Amplicon Sequencing (Targeted method)
Metagenomics (Non-targeted method)
Transcriptomics
Proteomics
Stable Isotope Probing
CSIA
Metabolomics

Application of MBTs Throughout Project Lifecycle

Assessment

Remediation

Monitoring

Is biodegradation or biotransformation occurring?

What parameters are limiting biodegradation or biotransformation?

Should a mechanical or biological* remedial approach be implemented?

Is remedy effective?

When to transition remedy?

"biological" = monitored natural attenuation (MNA), natural source zone depletion (NSZD), enhanced bioremediation Image Excerpt from Figure 3 Guidance Document E3354-22

Table 2. Selection of Commercially Available Genetic Targets Chlorinated Ethenes, Anaerobic

Acronym	Target	Relevance
Dhc	Dehalococcoides	Reductively dechlorinates PCE, TCE, all DCE isomers, VC
bvcA	BAV 1 Vinyl chloride reductase (bvcA)	Dechlorination of cDCE and VC to ethene
tceA	Trichloroethene reductase (vcrA)	Dechlorination of PCE and TCE to cDCE and VC

Table 2. Selection of Commercially Available Genetic Targets Additional Targets Covered:

Chlorinated Ethenes, Aerobic
Chlorinated Benzenes, Biphenyls, Phenols
BTEX, Anaerobic
BTEX, Aerobic
PAHs
N- compounds
Prokaryotic Groups

Molecular Biological Tool Selection:

Targeted Methods

- Requires prior knowledge of organism or gene of interest
- Methods designed to target specific bit of DNA/RNA of organism or gene (i.e., primers)
- Example of targeted methods
 - -PCR
 - -qPCR
 - -16S rRNA amplicon sequencing

Non-targeted Methods

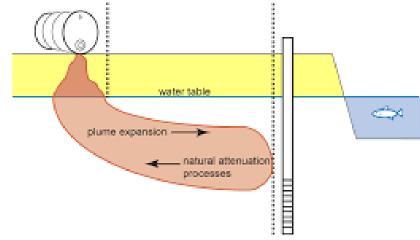
- Large data generated
- Challenge associated with data interpretation
- Example of non-targeted methods
 - -Metagenomics

Molecular Biological Tool Selection:

- Considered commercial availability
 - qPCR
 - NGS of 16S rRNA gene

Align tool selection with project goals

- Misuse of MBTs can result in waste time, effort, money
- Identify question to be answered
- Awareness of tool advantages/disadvantages
- Always employ a multiple lines of evidence approach:
 - -COCs
 - -Geochemistry
 - -MBTs


Sampling Plan Development:

Sample locations

- Align with CSM, site goals, e.g., plume vs. source area
- General locations: background, source, mid-plume, and plume edge

Sampling for Multiple Lines of Evidence

- Site COCs
- Geochemical Parameters
- MBTs

Section 9

Sample Collection,
Preservation and Shipping

AQUEOUS SAMPLES

Groundwater

Surface water

Porewater

Consider Purpose

Single Time Point
Time-weighted Average

Grab Samples are
Discrete or Single Time
Point

<u>Passive Samples</u> are Time-weighted Average

Aqueous Sampling Method	Advantages	Disadvantages	Comments
Grab – field filtration	Larger volumes, ease of preservation	Increased field time, filter and equipment costs	Well purging recommended; high pressure pumps can ruin filter
Grab – lab filtration	Less time in field	Potential for low biomass	Method consistency
Bio-Trap ^R	Easy to deploy	Only a subsample is extracted	Time-average

Solid Medium Sample Collection

Important variables:

- Soil moisture
- Exposure to air
- Geochemical conditions
- Heterogeneity of soil
- Time

Soil homogenization should be done by lab

Characteristics of Microorganisms in Soils:

Interface dwellers

Proliferate in organic-rich soils

Contaminant-degrading potential in contaminated and uncontaminated soil

Soil Sampling Method	Advantages	Disadvantages	Comments
Drilling Rotary Hollow Stem Auger Sonic	Soil Core obtained	Sonic disrupts soil texture Cooling fluids added can affect core representativeness	Soil Core is obtained Geologist or soil scientist needed on site
Probing Direct push	Less time in field Minimal disturbance of soil	Depth / soil type limitations	Easy to subsample for MBT test

Discrete – one aliquot per sampling interval Composite – aggregation of aliquots from a larger area

Sample Collection and Handling

Volume: about 50 grams

Containers: polymer preferred to glass, Whirl-Pak bags[®],

conical serum vials

Preservation: consult with shipping expert at lab. For

example:

MBT	Condition
qPCR DNA	≤ 4 degrees C
NGS, transcriptomics	-80 degrees C

Shipping:

- Overnight at -80°C (dry ice) best
- If cold storage not possible, use nucleic acid preservatives (e.g., DNAgard®)
- Use a temperature logger
- Chain of Custody with all MBT analyses specified

5/21/2023

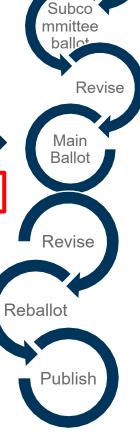
Section 10 DATA INTERPRETATION

- Data quality depends on sample collection and preservation
- Data value depends on planning
- Considered a tertiary line of evidence for biodegradation
- "Not Detected" doesn't necessarily mean "No"
- Need to connect the MBT result (gene or process) with a process

Standard Guide for Application of Molecular Biological Tools to Assess Biological Processes at Contaminated Sites

E3354 - 22

- Identifies tools that can be used to understand biological processes at contaminated sites
- Provides guidance for the selection of methods, sample collection and data interpretation
- Summarizes important factors for selecting tools



Status

E3354 - 22

Published September 2022

Passed on first main committee ballot

Molecular Biological Tools

Acknowledgments

All Task Group Members

ASTM Molly Lynyak, E50 Staff Manager

ASTM INTERNATIONAL Helping our world work better

Thank you

For more information on the Standard Guide for Application of Molecular Biological Tools to Assess Biological Processes at Contaminated Sites, contact Andrew.Madison at andrew.madison@wsp.com or Stephanie Fiorenza at sxfiorenza@gmail.com

www.astm.org

Invitation to Participate

Join ASTM!

ASTM INTERNATIONAL

Helping our world work better

ASTM is open to anyone with an interest

Membership is \$75/year and includes a free volume of ASTM standards

Many task group meetings for the development of standards take place online making it easy for you to participate from anywhere in the world

Join at www.astm.org/join

www.astm.org

ASTM INTERNATIONAL

Helping our world work better