Robotics in Environmental Site Assessment

Sixth International Symposium on Bioremediation and Sustainable Remediation Technologies

May 8, 2023

Austin, Texas

Justin Eichert
Trihydro

Katie Pritchard
Trihydro

Ben McAlexander
Trihydro

Natasha Sihota
Chevron

Thomas Hoelen
Chevron

Jeff Moore
Chevron

Agenda for Robotics in Environmental Site Assessment

Sixth International Symposium on Bioremediation and Sustainable Remediation Technologies

May 8, 2023, Austin, Texas USA

Background

Perspective of Presentation

Application

Excavation Monitoring

Case Study

Robotics in Environmental Industry

Limitations

Areas of Learning and Improvement

Application

Surface Soil Delineation

G

Going Forward

Current and Future Application

Background

- Robots Tested
 - Remote and autonomous ground robots
- Part of a larger research effort
 - Chevron Technical Center
 - Trihydro Corporation
 - Carnegie Mellon University
 - HEBI Robotics
- Perspective of an end user
- Many potential uses, but will focus on environmental application

Background

- Robotics Applications in the Environmental Industry
 - Unsafe Work Environment
 - Hazardous Atmosphere
 - Hard to Access Spaces
 - Advantages in Comparison to Human
 - Data processing
 - Repetitive tasks
 - Terrestrial and aquatic

Applications/Case Studies

- Surface Soil Delineation
 - Land Treatment Unit (LTU) adjacent to former refinery in Midwest U.S.
 - Use of controlled and autonomous vehicle to delineate lead concentrations in surface soil
- Excavation Monitoring
 - Former oil fields in central coast of California, U.S.
 - Use of controlled vehicle to retrieve soil sample to keep worker from hazardous areas

Image 1: Robot at LTU in Midwest U.S.

Image 2: Robot at Excavation Pit in California, U.S.

- Site Background
 - LTU for treatment of petroleum waste
 - Dense honeysuckle forest present mobility issues

Image 2: Former Refinery and LTU, Google Earth

- Human Health Risk Assessment
 - Identified lead (Pb) as a potential riskdriver
 - Potential remediation incudes delineation and excavation of soil above lead cleanup goal
 - Elevated lead concentration identified in northern section of LTU
 - This area selected for robotics test

- Robotics delineation technique
 - Define sampling area
 - Screen surface soils
 - Sample location selected by dynamic algorithm
 - Areas with elevated lead concentration
 - Areas with unknown lead concentration
 - Use LiDAR to avoid obstructions
 - Return a contoured map of lead (Pb) concentration

Pb Concentration (ppm) in-situ pXRF

- Typical Soil Delineation and Removal
 - Adjacent former tank farm soil delineation and "hotspot" removal
 - Stepwise sampling and analysis
 - Cost and time can be unknown
 - Additional expenses could be avoided
- Worker safety
 - Entering excavation
 - Working around heavy equipment
 - Contaminants in soil

Image 1-2: Photos of Former Tank Farm Excavation

Typical Soil Delineation and Removal

- 1300 square meters (m²) estimated but 2000 m² soil removed
- 800 cubic meters (m³) estimated but 1200 soil removed
- 32 total delineation samples and 9 confirmatory samples
- 7 delineation sampling events with minimum of 14 weeks sampling

EXPLANATION DELINEATION SAMPLE EXCEEDED CLEANUP GOAL DELINEATION / CONFIRMATORY SAMPLE BELOW CLEANUP GOAL HISTORIC SAMPLE EXCEEDED CLEANUP GOAL HISTORIC SAMPLE BELOW CLEANUP GOAL ESTIMATED / PLANNED EXCAVATION EXTENT FINAL EXCAVATION EXTENT

Image 1: Area of Former Tank Farm Excavation

- Typical Soil Delineation and Removal
 - Delineation of 2000 m² area cost approximately \$9.5k vs robot assisted at \$3.5k, excluding all costs associated with both methods
 - 65% cost reduction potential becomes more significant for larger excavations
 - Waste disposal cost approximately \$120k vs estimate of \$75k

			Existing Delineation an Excavation Method			Robotic Assisted with Dynamic Algorithm Excavation		
Description	Unit Cost	Units	Quantity		Cost	Quantity		Cost
Technician-Hours	\$ 85.00	Hour	78	\$	6,630.00	20	\$	1,700.00
Robot Operator-Hours	\$ 125.00	Hour				8	\$	1,000.00
Total Travel Days	\$ 75.00	Day	7	\$	525.00	1	\$	75.00
Analytical Sample	\$ 72.00	Sample	32	\$	2,304.00	9	\$	648.00
Total Cost				\$	9,459.00		\$	3,423.00

Table 1: Cost Comparison

Excavation Monitoring

- Former Oil Fields in Central Coast California
- Loose Dune Sand Terrain
- Petroleum Hydrocarbon (TPH) Impacted Soils
- Worker Safety Considerations
 - Excavation wall collapse
 - Heavy equipment
 - Contaminant exposure

Image 1: Photo of Excavation and Stockpile

Excavation Monitoring

- Typical Soil Excavation
 - Former well pads
 - Former recovery sumps
 - Petroleum impacted surface source
- Excavation Oversite
 - Determine Extent of excavation based on visual, physical, and analytical methods
 - Safely collect analytical samples to confirm extent of excavation
 - Typical sample locations from middle and four edges of excavation

Figure 1: Excavation Sample Schematic

Excavation Monitoring

- Robotics Assisted Excavation Monitoring
 - Use remote or autonomous controls to locate excavation sample location
 - Homogenize soils with auger at sample location
 - Use sensor to measure soil moisture content
 - Use infrared (IR) meter to measure TPH concentration
 - Track surface level carbon dioxide (CO2) for qualitative biodegradation indicator

Image 1: Photo of Robot Used for Excavation Monitoring

Image 2: Example observation view from field tablet

Limitations

- Primary Limitations
 - Mobility challenges
 - Field meter restriction
 - Sample depth and screening technique
- Practicality Limitations
 - Capital cost
 - Robot operation and assembly currently requires trained human support
 - Human currently better suited for many environmental assessment applications

Image 1-3: Photos of Robots

Summary and Next Steps

- Robots should become important future resource for environmental practitioners
 - Can be used in environmental site assessment to reduce labor cost while keeping workers out of harm's way
- Overcoming Limitations
 - Test robot with different terrain and objectives
 - Engineer sampling device and instrumentation
 - Work with multi-disciplinary project team to further explore site assessment application

Image 1: Photo of Robot

