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Context & Motivation

Detecting oil sheen potential is important in many situations

* Oil sheens are common, but unsightly
* May suggest potential for environmental impacts
* May suggest a need for remedial action




Sources of Oil Sheens

Natural oil seeps or microbial
Transportation (e.g. boats)
Runoff

Oil trapped in subaquatic
sediments




Methods are available for oil sheen
detection and monitoring

1. Large scale: Satellite Images

2. Small-scale:
* Human inspection --> high cost, low sample density
* Cameras and various sensors (UV, visible, IR, thermal)
* Drones




III

Detecting “Sheening Potentia

* Potential to form a sheen when a subaquatic
sediment is disturbed
* Animal or human disturbance
* Weather disturbances
* Flow disturbances |
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Autonomous Sheening Potential Detection

Sheen?

Disturbance
Droplets?

P —

But we need a detector!!




Challenges to creating an algorithm
for oil sheen detection

Detection algortihm

Solution
development challenges
* Lack of data == Prepare a dataset by lab
simulation

e How to learn from data ==# CNN + Transfer learning
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- Types of oil sheen images available cannot
work for us

Satellite images - Thermal images
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Methodology & Evaluation

Oil Sheen Detection Project Workflow
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Dataset

Training
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Experimental Setup
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Methodology

* Images (frames) from
the videos are described
and classified as having

Image classification

a sheen or not.

Manual classification of
all of the videos

Qil: 400 pL OIL-3
Deposit: Consolidated
Tool: Water Injection
Video/Photo Mo: 0664 (2)

Photo Description: Specks of
silver and rainbow sheens or
reflective sediment appeared
as tool was removed. Very
small amount of either
miniscule spots of true oil or
oil-particle aggregate also
appeared.

Oil: 400 pL OIL-2

Deposit: Consolidated
Tool: Rod Drop with Manual
Agitation

Video/Photo Mo: 0684 (5)

Photo Description: After the
manual agitation (tool allowed
to rest in column as surface
was observed), more picks of
true oil and oil sheens
appeared covering
approximately 75% the
surface in rainbow sheens.




Methodology & Evaluation

e Dataset — video frames from lab simulation of sediment

disturbance experiment

Example Oil sheen images Example No oil sheen images




Methodology

N oil
No Oil

lI
D ) r
1|
r - —
Input Conv I_Pool Conv
L a L

1/1[1,/0(0
OKCI 1x1 1><Cl 1 0 4
IOBEE -
0O(0f1(1(0 :
oO(1({1(0f{o0
image Convolved Convolved  Pooled
Feature feature feature

Extract visual and
spatial features by
kernele

Down-sampling
operation

FC Softmax

§64656884838%

Io’o—onooo

Combined learnt features
together to make
decision

Convolutional neural network (CNN), commonly
applied to analyzing visual imagery

CNN 3 major components:

1. Convolutional layer:
Extract visual and spatial
features by kernels

2. Pooling layer:
reduce the size of feature by
down-sampling operation

3. Fully connected layer:
Combined learned features
together to make decision



Methodology & Evaluation-Transfer Learning
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Methodology & Evaluation

Oil Sheen Detection Project Workflow
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Methodology & Evaluation

Prediction accuracy: 99% (Test dataset)

No oil sheen No oil sheen With oil sheen With oil sheen

Prediction results V V V V

Oil sheen image ground truth and prediction results




Actual Label

True positive

Methodology & Evaluation Precision = _ _
True positive + False positive

Confusion Matrix

confusion matrix normalized Lo True pOS]tiVE
Recall =
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False negative
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Methodology & Evaluation

Real Time Detection
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Future work

1. Test algorithm in the field

2. Develop a deployable system

3. Continue to add more images/video and

improve the algorithm




Thank you!

Carnegie Mellon University



Backup slides

Carnegie Mellon University



Methodology & Evaluation

Oil Sheen Detection Project Workflow
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Environmental Fields
tendency

More data
* Sensors
* |mages
* Text

Machine learning

Learn from data
1. Statistical learning

2. Data mining
3. Neural networks

Hard to Model
* Air pollution

* Climate change
* Health impacts

Smarter decision = domain knowledge + learnt knowledge



Methodology & Evaluation

Raw data

E.g. Face detection

Input

Low-level features Mid-level features High-level features

ASNINY 7 OEACESS EasBEn
NZEZN L e Ry NG =8 &

ISR = 5
ALZANN g =f}_ﬂ;_",{" Uahern

_— = veeaal d el ans

\ \ \

Conv Pool Conv Pool

What kind of feature are CNN looking for?

4
’
4
s
’
~
~

FC

Face

No face

-l

Qil
No Oil

FC Softmax



Methodology & Evaluation

Transfer Learning -- Solve the problem of lack of data

Source labels

L

Large
amount of
data/labels

/ Source model \

L Target labels J.\
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Transfer Learned
Knowledge
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Methodology & Evaluation

ImageNet: 14,197,122 images, 1,000 classes

General feature extractor =«
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Context & Motivation
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Methodology & Evaluation s
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Conclusion & Future work

Satellite images
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Methodology

Good at image classification)
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Combined learnt features
together to make
decision

Convolutional neural network (CNN) is a class of deep neural
networks(NN), most commonly applied to analyzing visual imagery (

Advantage of CNN:

1 Local connection and
parameter sharing: reduce the
requirement of tons of
parameters

2 Shift invariant: Capture
spatial information make your
model generalize better



Current Model — Intro

Hypothesis:  Linear regression
he(x) =0y + 0,z

Parameters:
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Current Model — Intro

Gradient descent for neural networks
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Current Model —

H(x)

Resnetl8
X l X
. weight layer
weight layer }_ I
relu
lrehj ¥ '
weight layer
weight layer
¥ rel Flx)+x

Mormal CHM vs CHNMN with Residual Connection

CQxl ('R
= Eﬂ[;:%v O
R s

X
identity




Approach

Image-based model

By using the Residual Block, the vanishing gradient problem can be solved. With Residual Block, the gradients can
flow directly through the skip connections backwards from later layers to initial filters, by adding layers are identity
mapping. The existence of this constructed solution indicates that a deeper model should produce no higher training
error than its shallower counterpart.
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Current Model — transfer learning
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Current Model — Resnetl18
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Approach

Model Evaluation

1. Accuracy
2. Classification confusion metrics

3. Precision
4. Recall

5. F1 Score

True positive

Precision = — —
True positive + False positive

True positive

Recall = — -
True positive + False negative

Precision X Recall

=2 X
Kl score = 2 Precision + Recall



Actual label

Model Evaluation

confusion matrix normalized
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Approach

Real-time video oil sheen prediction algorithm
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Model Evaluation
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(a) Oil sheen prediction result with no filter



Model Evaluation
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(b) Oi1l sheen prediction result with filter (kernel = 3)



Model Evaluation

Real Time Detection
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Model Evaluation

Result recorded

Real Time Detection
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Oil sheen detected
with filter = 3

Warning will be given when
oil Sheen was detected
in 3 consecutive times
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