

Scott M. Larew E.D. Meeks, A.G. Seech

10 May 2023

How We Got Here...

...and TNT Got There

Starting With The End In Mind

Monitored Natural Attenuation GW Remedy

Dissolved Phase Degradation

Soil Source Mass Removal

PILOT STUDY → Biology & Chemistry

CONCEPT DESIGN → Regulatory Approvals

ENGINEERING → Particle Size Reduction

If you don't know where you are going, you'll end up someplace else.
-Yogi Berra

STUDY TRIALS

- 3 Controls
- 2 Wood Mulch
- 6 Soil Amendment

STUDY VARIABLES

- Amendment
- Dosage
- Turnover

STUDY PERIOD

- 12 Wk. Active Management
- 2 Yr. Passive Monitoring

Critical Engineering Design Objectives

SOIL PREPARATION

- TNT to <2mm
- Clean Aggregate

BIOSLURRY MANAGEMENT

- Homogenization & Solids Settling
- Moisture & Temperature

	Apr	May	June	July	Aug
2	7.13	5.47	5.36	2.88	0.99
7	2.31	4.55	2.20	6.85	10.69
8	4.83	3.96	1.82	6.71	6.01
1	4.50	10.38	4.50	6.81	4.73
9	5.21	4.59	2.86	6.82	8.71
2	3.89	5.41	3.12	6.22	4.25
6	2.19	3.91	2.42	6.57	3.07
4	2.49	1.33	7.10	2.75	2.66
0	4.76	5.51	4.67	5.14	2.22
7	2.21	5.04	8.26	5.01	4.82
4	2.80	5,54	3.38	3.63	3.85
5	6.85	5.75	4.64	3.18	13.29
0	3.16	3.64	2.70	4.37	3.51
	3.21	4.67	7.93	5.72	7.01

WATER BUDGET & BALANCE

- Operations vs. Stormwater
- Active vs. Passive Seasons

Pre-Screen Oversize

- Dry sorted, no TNT
- Reuse as backfill

Wet Screen Oversize

- Washed clean, no TNT
- Reuse as backfill

Fines/TNT Slurry

- Amend with CSA
- Degradation in geotubes
- Reuse as backfill
- In-situ degradation

Critical Engineering Design Objectives

SOIL PREPARATION

- TNT to <2mm
- Clean Aggregate

BIOSLURRY MANAGEMENT

- Homogenization & Solids Settling
- Moisture & Temperature

	Apr	May	June	July	Aug
2	7.13	5.47	5.36	2.88	0.99
7	2.31	4.55	2.20	6.85	10.69
8	4.83	3.96	1.82	6.71	6.01
1	4.50	10.38	4.50	6.81	4.73
9	5.21	4.59	2.86	6.82	8.71
2	3.89	5.41	3.12	6.22	4.25
6	2.19	3.91	2.42	6.57	3.07
4	2.49	1.33	7.10	2.75	2.66
0	4.76	5.51	4.67	5.14	2.22
7	2.21	5.04	8.26	5.01	4.82
4	2.80	5,54	3.38	3.63	3.85
5	6.85	5.75	4.64	3.18	13.29
0	3.16	3.64	2.70	4.37	3.51
	3.21	4.67	7.93	5.72	7.01

WATER BUDGET & BALANCE

- Operations vs. Stormwater
- Active vs. Passive Seasons

Bioslurry

Single Dose → Use of Geotubes

Geotubes → **Optimized Conditions**

Critical Engineering Design Objectives

SOIL PREPARATION

- TNT to <2mm
- Clean Aggregate

BIOSLURRY MANAGEMENT

- Homogenization & Solids Settling
- Moisture & Temperature

2 7.13 5.47 5.36 2.88 7 2.21 4.55 2.20 6.85 1 4.8 4.81 3.96 1.82 6.71 1 4.50 10.88 4.50 6.81 9 5.21 4.59 2.86 6.82 2 3.89 5.41 3.12 6.22 5 2.19 3.51 2.42 6.57	0.99 0.69 6.01
7 2.31 4.55 2.20 6.85 8 4.83 3.96 1.82 6.71 1 4.50 10.38 4.50 6.81 9 5.21 4.59 2.86 6.82 2 1.89 5.41 3.12 6.22 6 2.19 3.51 2.42 6.57	0.69
8 4.83 3.96 1.82 6.71 1 4.50 10.38 4.50 6.81 9 5.21 4.59 2.86 6.82 2 1.89 3.41 3.12 6.22 8 2.19 3.91 2.42 6.57	_
1 4.50 10.38 4.50 6.81 9 5.21 4.59 2.86 6.82 2 1.89 5.41 1.12 6.22 6 2.19 3.91 2.42 6.57	6.01
9 5.21 4.59 2.86 6.82 2 3.89 5.41 3.12 6.22 6 2.19 3.91 2.42 6.57	
2 1.89 5.41 1.12 6.22 6 2.19 3.91 2.42 6.57	4.73
6 2.19 3.91 2.42 6.57	8.71
	4.25
3 40 3 33 7 30 3 30	3.07
9 2.48 1.22 5.10 2.13	2.66
0 4.76 5.51 4.67 5.14	2.22
7 2.21 5.04 B.26 5.01	4.82
4 2.80 5,54 3.38 3.63	3.85
5 6.85 5.75 4.64 3.18 3	3.29
3.16 3.64 2.70 4.37	3.29
3.21 4.67 7.93 5.72	3.51

WATER BUDGET & BALANCE

- Operations vs. Stormwater
- Active vs. Passive Seasons

Balanced Water Cycle

- Closed Loop (1.6M gal)
- Makeup Water Sources
- Seasonal Run-on/Run-off
- In-situ Irrigation
- Wet Screening
- Attritioning

- Biofeed Slurrying
- Polymer Blending
- Biofeed Dewatering
- Soil Moisture Mgmt
- Inflows/Outflows
- Recirculation

- Degradation
- Irrigation

We Promised Data...

Schedule

- Delayed 18+ months
- Wet Test & Commission Fall 2023
- Year 1 Soil Processing April 2024

Lessons Learned

- During a pandemic......schedule 2x as long...budget 2x as much
- See you at Bioremediation Symposium 2025

Follow Nature's Lead

Bring The Regulators Along For The Ride

Just Keep Solving

We are continually faced by great opportunities brilliantly disguised as insoluble problems.

- Lee lacocca

Scott Larew
Principal Scientist

609.285.2626 scottlarew@kennedyjenks.com

