Isolation and Characterization of Nitroguanidine(NQ)-degrading Bacteria

Kung-Hui (Bella) Chu, P. E.

Professor, Zachry Department of Civil & Environmental Engineering

Texas A&M University, College Station, TX kchu@civil.tamu.edu; https://chulab.engr.tamu.edu

Presentation to
2023 Battelle Bioremediation Symposium at Austin, Texas
May 10, 2023

Project Team (ER19-1198)

Membrane Bioreactor System for Cost Effective Treatment of Munitions Constituents Manufacturing Wastes

Drs. Paul Hatzinger and Mark FullerAPTIM

Dr. Kung-Hui (Bella) Chu
Texas A&M University
Jinha Kim , Ph.D. Student

Dr. Todd S. Webster
Envirogen Technologies

Dr. Pamela SheehanRDECOM-ARDEC, Picatinny Arsenal

Dr. Charles Schaefer CDM-Smith

Munitions

Sensitive	Toxicity	Property		
TNT (before WWII)	Carcinogen	Sorbs to soils		
RDX (after WWII)	Possible carcinogen	Sorbs poorly to soils.A common GW contaminant		

Insensitive munitions

- being developed to
 - ✓ resist external impact, friction, heat, or sparks from unexpected events
 - ✓ minimize the acute hazards

Nitroguanidine (NQ)

- · colorless, crystalline solid
- melts at 257 °C and decomposes at 254 °C.
- Nitroguanidine is an extremely insensitive but powerful high explosive.
- Other uses:
 As precursors for herbicides
- Acute, and chronic toxicity against mice, aquatic organisms, and plants
- Ammonium nitrate as residual (~10%) could be left during NQ synthesis waste streams

Abiotic NQ degradation:

- photolysis and catalytic reactions
- Reductive degradation by Iron-based minerals
- => more toxic metabolites

Biodegradation of Nitroguanidine (NQ)

Aerobic biodegradaton of NQ by Variovorax strain VC1

$$\begin{array}{c} NH_2 \\ NO_2 \\ NO_2 \\ NO_2 \\ NO_2 \\ H_2^{18}O \end{array} \begin{array}{c} NH_2 \\ H_2^{18}O \\ NO_2 \\ H_3^{18}O \end{array} \begin{array}{c} NH_2 \\ NO_2 \\ NH_3 \\ NO_2 \\ NH_3 \end{array} \begin{array}{c} NO_2 \\ NH_3 \\ NO_2 \\ NH_3 \\ NO_2 \\ NO_3 \\ NO_4 \\ NO_2 \\ NO_2 \\ NO_3 \\ NO_4 \\ NO_4 \\ NO_5 \\ NO_5 \\ NO_5 \\ NO_6 \\ NO_7 \\ NO_8 \\ NO_9 \\$$

 Only 1 bacterium has been identified and characterized. Strain VC1 is an aerobic bacterium capable of using NQ as a sole nitrogen source

Complete NQ degradation in Aerobic Membrane Bioreactor (MBR)

Enrichment and Isolation of NQ-degraders

Enrichment sources

- Sediments from Galveston Bay, TX
- AFFF-impacted soils from San Antonio, TX
- Biomass from a NQ-degrading membrane bioreactor

N-source: NQ (2 mM)

C-source: glucose (11 mM)

Nitrogen-free mineral salts medium

Growth Curves of 3 NQ-degrading Cultures

NQ as a Sole Nitrogen Source

Identification of 3 Isolates

Is strain NQ5 salt tolerant?

Positive control

 No NaCl
 NaCl

Positive control: strain NQ5 in N-free MSM + 0.2% glucose+ 2mM NQ

=> Strain NQ5 has a potential to treat NQ in saline wastewater

Can isolates grow on different N sources?

Growth on inorganic nitrogen and NQ analogs

As N-source	Chemical structure	NQ4 (soil)	NQ7 (sediment)	NQ5 (MBR)	
Nitroguanidine (NQ)	NH NO ₂	+	+	++	
Ammonium	$\begin{bmatrix} H \\ -1 \\ H-N-H \\ -1 \\ H \end{bmatrix}^+$	++	++	++	
Nitrate		++	++	++	
Nitrite	O_NO_	++	++	1	*
Urea	H_2N NH_2	++	++	++	
Guanidine	H_2N NH NH_2	+	+	++	
Guanylurea	NH O H ₂ N NH ₂	-	-	+	
Biuret	H ₂ N NH ₂	-	-	-	←
Ethyl allophanate	H ₃ C O NH ₂	-	-	++	

NQ5 can degrades

- ✓ Nitroguandien
- ✓ Guanidine
- ✓ Guanylurea
- ✓ Ethyl allophate

NQ5 can't use nitrite.

 Biuret can't be used by all three isolates.

Do different nitrogen sources affect NQ degradation by strain NQ5?

Effects of NH₄⁺ on NQ degradation

NQ-grown Strain NQ5

Effects of NH₄⁺ on NQ degradation

- When NH_4^+ was spiked at hour 12, strain NQ5 continued degrading NQ until it was depleted. However, no cell growth was observed during shortly after NH_4^+ addition.
- No NO₃⁻ was not detected.

Effects of NO₃ on NQ degradation

Effects of NO₃ on NQ degradation

- When NO₃ was spiked at hour 12, strain NQ5 continued degrading NQ until it was depleted. No immediate pause of cell growth until NQ was depleted.
- Accumulation of NH₄⁺ was observed around hour 4-15.

Can NQ be degraded by NH₄+-grown strain NQ5?

Can NQ be degraded by NO₃⁻ -grown strain NQ5?

Take Home Messages

 Three NQ-utilizing bacteria, strains NQ4, NQ5, and NQ7, were isolated from soil, an aerobic MBR, and marine sediment, respectively. <u>All three strains can</u> <u>utilize NQ as a sole nitrogen source</u>.

Strain NQ5

- exhibited a 4-fold faster NQ degradation compared to that of the only known NQ degrader (*Variovorax* strain VC1),
- can tolerate up to 2% NaCl.
- can utilize guanidine, guanylurea, and ethyl allophanate, but not nitrite as N source
- NQ degradation was not inhibited by the presence of nitrate, but ammonium.

Future Works

 Identification of functional genes in the involving in NQ degradation in strains NQ4, 5, and 7.

XenA and XenB genes in NQ5

XenA (CDS 87.49% similarity with *Psuedomonas putida* XenA) XenB (CDS 84.25% similarity with *Psuedomonas putida* XenB)

- Assess cometabolic degradation of other types of IMs by strain NQ5
- Assess feasibility of bioaugmentation with NQdegraders for enhanced NQ removal.

THANK YOU 3

