

Innovations in Predicting Resilient Adaptations: Cascading Coupled Extremes of Wildfire, STORMs, Debris Flows, and Floods

Thad Wasklewicz Stantec Fort Collins, CO, USA – thad.wasklewicz@stantec.com Curtis Smith Stantec New York, NY, USA Mark Bartlett Stantec New York, NY, USA Richard Guthrie Stantec Calgary, AB, CA 0 т

S

 \supset

ш Σ \supset 0

ပ

З \sim

0 \sim Ľ

Introduction

Wildfires lead to cascading hazards

Climate change has added another dimension to these complex responses

Scientists and engineers are developing novel understandings in hazard and risk analysis that inform emergency planning and mitigation.

- United Nations Environment Programme, Spreading like Wildfire The Rising Threat of Extraordinary Landscape Fires, (2022)
- 2. D. Touma, S. Stevenson, D. L. Swain, D. Singh, D. A. Kalashnikov, X. Huang, Sci. Adv., 8, p.eabm0320 (2022)

Introduction

Here, we are presenting several innovative modeling and monitoring tools that:

- Near-real time monitoring to show when these events have the potential to occur (will adapt to climate change over time).
- Model long-term changes associated with climate change.

Four products we are using to advance our understanding of climate change and the impacts to extreme cascading geohazards:

- Slope and Storm Manager
- DebrisFlow Predictor
- Flood Predictor

Storm Manager

🧥 🔄 Deshboard 🛞 Add Station 🗅 Documents 🗸 👁 View

ы	Feature Name	Submitter	Module	Latitude	Longitude	Submit Date	Area	Condition
110	IP1. Clearwoller	Rick Guthrie	Stope	56.6617	-111.0946	0001-01-01 00:00:00		
80		Rick Guthrie	Slope			2021-08-27 14.59:58		
81						2021-09-01 15:11:44		
94	Monnery River Near Paradise Hill 05EF004	Rick Guthrie	River	53.5411	-109.52722	2021-09-08 09:21:51	2.749 km*	
91	Husky HID H8967	Rick Guthrie	River	51.351545		2021-09-08 09:04:33	4113.879 km²	
93	Husky HID 1430	Rick Guthrie	Skope			2021-09-08 09:15:18		
86	TAQA HID 1610	Rick Guthrie	River	54.176484	-115.554442	2021-09-06 08:23:52	17.876 km*	
39	Husky Monney River Watercourse Crossing	Rick Guthrie	River	53.503907	-109.559055	2021-07-05 13:58:35	1215.204 km²	
100	HID 652	Julia Ryherd	River	51.523194	-113.483216	2021-10-12 16:51:31	39.546 km²	
99	HED 384	Julia Ryherd	River	51.3553624	-114.0129695	2021-10-12 16:49:12	3.131 km²	
82	James River Station 05CAD02	Rick Cuthrie	River	51.9267	-114.685278	2021-09-07 12:39:01	815.730 km²	
37	Husky Monney River Slope	Rick Guthrie	Slope	53.504231	-109.560942	2021-07-05 13.55:00		
90	Repool HID S1504	Rick Guthrie	Slope	53.873846	-117.460552	2021-09-08 08:50:27		
114	OKIB DebrisFlow Predictor Sile	Rick Guthrie	Slope	50.32689		2022-01-31 09:41:05		
87	Enbridge Gas HID 13581	Rick Guthrie	River	43.348171	-80.315448	2021-09-08 08:37:48	3515.714 km²	

-1	homain		D:	LOP 1	(Pinner)	
•	remain	us	n,	ver	(River)	

Area 344.387 km²

371,207 Km

Condition No threshold exceeded

Submitter

Graham Knibbs

0 H I O

S

UMBU

с 0

З

202

Ľ

DebrisFlow Predictor

- Agent-based model
- Model debris flows from initiation to deposition
- 5 m DEM, agent interacts with slope & each other, choose paths, scour, deposit until their sediment balance is zero
- Model output = runout, inundation, deposit depth, volumes, avulsions, alluvial fan development
- Probabilistic output
- Developed over 15 peer-reviewed articles using DFP results in past 2 years.

Solution DebrisFlow Predictor

Flood Predictor Potential Applications

ApplicationsPluvial and
Fluvial Flood
ExtentsReal-time Storm
PredictionsMitigation and
Resilience
PlanningClimate Change
ForecastingEmergency
Management/
Disaster
Response

Most Beneficial When

		\checkmark	\checkmark	\checkmark
Unmapped or Invalid Study Areas	L	imited Data	Limited Budget	Limited Schedule

 \bigcirc

 \bigcirc

Flood Predictor – Prediction

User Defined

Conclusions

Virtually monitor remote sites

Model to provide rapid, definitive results in rural/remote areas

Proactively assess cascading hazards in the context of climate change

Integrate the scientific and modeled results to provide evidence-based decisions for communities and along linear infrastructure.

These decisions should in turn lead to mitigation efforts that produce resilient communities and infrastructure.

