

Geoengineering Stratospheric Aerosols: Lessons from Volcanic and PyroCb Injections

M. Dubey*, J. Reisner, G. D'Angelo, X. Sun and P. Chylek

Battelle Innovations in Climate Resilience Columbus, OH 3/29/2023

LA-UR-23-23043

4/18/2023

Solar Geoengineering Concept and Rational

Raise Stratospheric Aerosols to Reflect More Sunlight and Cool the Surface

Global Post Pinatubo Cooling

Fast response, needs steady injection, risks unknown

SAI Risks: Known and Unknowns

- Human Engineered Model Simulations
 - Sulfate, Smoke, CaCO₃
- Use Natural Analogues to evaluate model skill
 - Volcanic Sulfate
 - PyroCb smoke/soot
- Knowledge Gaps and Heterogeneous Impacts
 - Cools to slow global warming: Low costs at scale
 - Stratospheric ozone depletion/warming
 - Regional Cooling/Warming or Drying/Wetting
 - Global circulation and cloud (cirrus) feedbacks
 - Surface deposition and air quality
 - No Governance, Risk Unilateral Action
 - Slows decarbonization pace, Ocean acidifies
 - Emergency response to extreme thresholds

CMIP5: 50-75° Winter Warming after Volcanoes captured by 7/30 Models

Chylek GRL 2020

Post Volcanic Winter Warming over Eurasia for 2 years

S Los Alamos CMIP6 models reproduce winter warmings after Pinatubo but not El Chicho'ñ'2023 5

Winter warming via stratospheric dynamics (positive Northern Annular Mode excitation and positive North Atlantic Oscillation)

Geoengineering: Eurasian Winter Warming 2020-2095

Temperature vs Hydrological Cycle (P-E)

PyroCb Stratospheric Smoke: British Columbia & Australia

PyroCb Smoke Mass & Lifetime Captured by LES + CESM

D'Angelo JGR 2022, Reisner JGR 2023

Australian Fires injected 0.8 Tg smoke: Small 0.1-0.2 C cooling (20-60S), -3 W/m² sunlight reduction for <6 months

D'Angelo JGR 2022

Engineered CaCO_{3:} Chemistry/Ice-Nucleation Gaps

Model: SAI without O₃ loss (*Keith PNAS 2016*)

Gaps: O₃ loss by hydrates (Czisco, Sci. Rep. 2019)

Hydrated/unreacted CaCO₃ reactivity unkown!

Incomplete knowledge of natural aerosol perturbations that is worse for engineered aerosols is the limiting factor

- Cooling of 0.5 C from 20 Tg Pinatubo SO₄ & 0.1 C from 1 Tg Australian fire smoke.
 Stratospheric O₃ loss/warming observed after natural pulses, also predicted for SAI.
 Dynamical (tropics-pole) changes cause Eurasian winter warming after volcanoes.
 Model CaCO₃ chemistry is incomplete and cirrus cloud feedbacks unknown.
 Cloud shielding reduces the efficacy of SAI cooling by ~50%.
 Historically models have lagged observations in capturing the chemical-dynamical complexities: Research, caution and carefully managed expectations are critical.
- 7. Unilateral action, heterogeneous impacts & no governance are security concerns.
- 8. Fundamental aerosol-climate-chemistry research on impacts of pollution, volcanoes, fires, nuclear exchange, and **SAI** need to be coherently integrated.

