Hydrothermal Liquefaction as a Tool to Enable Plastic Circularity

29 March 2023

Erica S. Howard (Battelle Memorial Institute, Columbus, Ohio, USA)

Plastic circularity is necessary to stop plastic

Global plastic consumption, production, and waste generation has more than doubled since 2000

70% of plastic waste is disposed of by traditional methods 15% of plastic waste is collected for recycling, while 9% of plastic is recycled successfully

Remaining plastic eludes waste management and ends up incinerated or dumped into the ecosystem

Innovative feedstocks improve sustainable industry

Only 7 petrochemicals are used as feedstocks for 90% of chemical processes

In 2012, petrochemical feedstock processing accounted for roughly 60% of the energy consumed in the chemicals sector

Energy for chemical processing could be lowered by creating valueadded products or feedstocks from recycled plastics

Hydrothermal liquefaction effectively breaks down

nactice

Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP)

Kai Jin^{a,b,1}, Petr Vozka^{b,1}, Gozdem Kilaz^b, Wan-Ting Chen^c, Nien-Hwa Linda Wang^{a,*}

^a Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA

^b School of Fraineering Technolomy Evel Laboratory of Penewahle Energy (ELOPE) Durdue University West Laboratory IN 47007 USA

^c Departmen

Influence of reaction parameters on thermal liquefaction of plastic wastes into oil: A review

Nurul Izzah Ahamed Kameel^a, Wan Mohd Ashri Wan Daud^{a,*}, Muhamad Fazly Abdul Patah^{a,*}, Nurin Wahidah Mohd Zulkifli^b

^a Department of Che

^b Department of Med

Characteristics of polyethylene cracking in supercritical water compared to thermal cracking

Takehiko Moriya^{a,*}, Heiji Enomoto^b

^aTohoku Electric Power Co., Research and Development Center, 7-2-1 Nakayama, Aoba-ku, Sendai 981-0952, Japan ^bTohoku University, Department of Geoscience and Technology, Sendai 980-8759, Japan

Hydrothermal liquefaction uses water to degrade

Plastic Hydrothermal liquefaction is a **thermal depolymerization process** that converts organic waste, biomass, and other macromolecules, into value added products under moderate-extreme temperature and high pressure

Hydrothermal liquefaction uses subcritical and supercritical water as a universal reaction media

Features of supercritical water:		Normal Water	Sub- critical water	Super- critical water		
 Low dielectric constant 	Temperature (°C)	25	250	400	400	
 Low viscosity 	Pressure (MPa)	0.1	5	25	50	
 High diffusivity 	Relative static dielectric	0.997	0.8	0.17	0.58	
 Very low ionic product 	constant (ε)					
 Acts as both solvent 	рК _W	78.50	27.10	5.90	10.50	
and catalyst	Thermal Conducitivty	0.89	0.11	0.03	0.07	
 Suitable for free radical 	(mW/mK)					
reaction	Dynamic viscosity (mPAs)	608	620	160	438	

Tunable parameters offer a high level of reaction

We investigated the influence of reaction parameters on LDPE breakdown

LDPE breakdown

- Temperature
- Pressure
- Reaction time
- Ratio of water to feedstock
- Catalytic influence

We investigated the influence of reaction parameters on LDPE breakdown

- Temperature
- Pressure
- Reaction time
- Ratio of water to feedstock
- Catalytic influence

Reaction products vary from solids to oils

The majority of LDPE was converted to alkanes

#	Temp °C	Time	Feedstock LDPE	Feedstock: water ratio	% alkane	% alkene	% aromatic	Avg chain length
23	425 °C	60 min	25g	<1	High	Med	Low	17.3
24	425 °C	60 min	100g	1	High	Low	Low	18.8
25	425 °C	60 min	5g	<1	High	Med	Low	14.6
26	425 °C	60 min	5g	<1	High	Med	Low	16.3
32	425 °C	60 min	10g	>1	High	Med	Low	13
33	425 °C	60 min	10g	1	High	Med	Low	12.6
34	425 °C	60 min	10g	<1	High	Med	Low	12.7
48	435 °C	60 min	100g	1	High	Low	Low	13.5

The majority of LDPE was converted to alkanes

#	Temp °C	Time	Feedstock LDPE	Feedstock: water ratio	% alkane	% alkene	% aromatic	Avg chain length
23	425 °C	60 min	25g	<1	High	Med	Low	17.3
24	425 °C	60 min	100g	1	High	Low	Low	18.8
25	425 °C	60 min	5g	<1	High	Med	Low	14.6
26	425 °C	60 min	5g	<1	High	Med	Low	16.3
32	425 °C	60 min	10g	>1	High	Med	Low	13
33	425 °C	60 min	10g	1		ntont	Low	12.6
34	425 °C	60 min	10g	< <u></u> , f	w	12.7		
48	435 °C	60 min	100g	1	and temp	v	13.5	
				In	lengt	rage chair :h		

We investigated the influence of catalysts on LDPE

LDPE breakdown

- Temperature
- Pressure
- Reaction time
- Ratio of water to feedstock
- Catalytic influence

Catalyst promotes aromatic production under supercritical conditions

#	Temp °C	Time	Feedstock LDPE	Solid Catalyst	Feedstock: water ratio	% alkane	% alkene	% aromatic	Avg chain length
32	425 °C	60 min	10g		>1	High	Med	Low	13
33	425 °C	60 min	10g		1	High	Med	Low	12.6
34	425 °C	60 min	10g		<1	High	Med	Low	12.7
35	425 °C	60 min	10g	0.5g	>1	High	Low	Med	9.3
36	425 °C	60 min	10g	0.5g	1	High	Low	Med	9.0
37	425 °C	60 min	10g	0.5g	<1	High	Low	Med	9.5

Catalyst promotes aromatic production under supercritical conditions

#	Temp °C	Time	Feedstock LDPE	Solid Catalyst	Feedstock: water ratio	% alkane	% alkene	% aromatic	Avg chain length
32	425 °C	60 min	10g		>1	High	Med	Low	13
33	425 °C	60 min	10g		1	High	Med	Low	12.6
34	425 °C	60 min	10g		<1	Lligh	Med	Low	12.7
35	425 °C	60 min	10g	0.5g	Catalys aromatic reduces a	st promotes products a average ch	s Ind ain	Med	9.3
36	425 °C	60 min	10g	0.5g		ength		Med	9.0
37	425 °C	60 min	10g	0.5g	<1	High	Low	Med	9.5

Conclusions

Degrading chemically resistant plastics can be challenging. Hydrothermal liquefaction is a promising technology for degrading and re-functionalizing plastic waste.

The reaction parameters for hydrothermal liquefaction can be tuned to change products and physical properties. Use of catalysts increases the variety of products available using hydrothermal liquefaction.

Currently, the influence of reaction parameters, catalysts, and solvent selection is being used to investigate hydrothermal liquefaction of different plastics and mixed waste.

Thank you for your time!

Extra slides

PE degradation mechanism & insight

- Bockhorn et al suggest mechanism for PE decomposition is radical chain mechanism
- Initial polymer chain random cracking will form alkenes by b-scission and hydrogen abstraction
- The alkene/alkane ratio is determined by the contribution of b-scission and intermolecular hydrogen reaction
- Alkene/alkane ratio and selectivity of alkadienes increase with increasing bscission
- The product distribution helps narrow down which pathway our reaction is taking
- Zhang suggests in flow reactor primary radicals surrounded by flowing SCW reduces hydrogen abstraction and enhances unimolecular b-scission

