

Developing a National Virtual Biosecurity of Bioenergy Crops Center (NVBBCC)

Martin Schoonen (PI), Kerstin Kleese van Dam, John Shanklin, Alistair Rogers, Robert McGraw, Qun Liu, Shantenu Jha, and Paul Freimuth (freimuth@bnl.gov)

March 27, 2023

NVBBCC: Historical Context

DOE established the *National Virtual Biotechnology Lab* (NVBL) to facilitate research on COVID 19

NVBL leveraged DOE facilities and expertise:

- Structural biology
- Omics
- Nanomaterials
- Dispersion modeling
- Computing infrastructure

NVBL identified barriers to implementation

- Intellectual property
- Safety concerns
- Sharing of data and materials

NVBL was highly productive

www.nature.com/scientificreports

scientific reports

OPEN Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease

> Babak Andi^{1,7,12}, Desigan Kumaran^{2,7,12}, Dale F. Kreitler¹, Alexei S. Soares¹, Jantana Keereetaweep², Jean Jakoncic¹, Edwin O. Lazo¹, Wuxian Shi¹, Martin R. Fuchs¹, Robert M. Sweet¹, John Shanklin², Paul D. Adams^{3,4,7}, Jurgen G. Schmidt^{5,7}, Martha S. Head^{6,7} & Sean McSweeney^{1,2,7} ⊠

Scientific Reports

(2022) 12:12197

| https://doi.org/10.1038/s41598-022-15930-z

natureportfolio

BRaVE: a new initiative spawned by NVBL

Biopreparedness Research Virtual Environment

More global in scope: host-pathogen interactions in world's ecosystem

- Basic research on mechanisms of disease and resistance
- Establish pipelines for rapid response to emerging biothreats
- Computational platforms to integrate various data and advance modeling/prediction
- Develop new protective materials and biothreat detection/characterization techniques

Relevance to ICR23

ENVIRONMENT

Impact of climate change

NVBBCC: Rationale

Large-scale deployment of bioenergy crops is a cornerstone of future US bioeconomy

DOE invests \$100M/yr in foundational research to develop potential bioenergy crops through its Bioenergy Research Centers

The new center focusses on the biosecurity of bioenergy crops

NVBBCC Vision

- A distributed Virtual Center that leverages unique facilities and expertise across the DOE complex
- An efficient pipeline for characterization of emerging threats
 - State-of-the-art resources for biomolecular characterization
 - Scalable computing platform to support collaborative research
 - Detection and modeling of airborne diseases
- Long-term plant pathology research agenda in collaboration with USDA, DHS, Academia and Industry partners
- A resource for sharing protocols, materials, and data with stakeholders

NVBBCC Science Drivers

Identify pathogens in the environment

 Determine molecular mechanisms of infection and plant resistance

Integrate data for precision modeling of bioenergy crop ecosystems

Development Phase of NVBBCC—Community Input

Assemble thought leaders from DOE, USDA, DHS, Academia and Industry in series of topical planning meetings

- Identify knowledge gaps
- Define research agenda to close gaps, leverging expertise and facilities within and outside DOE
- Identify DOE investment needs to advance this research
- Identify barriers to sharing of data, materials, and information

Virtual Planning Meetings

- Biomolecular Characterization (held in February)
- Atmospheric Dispersion and Climate-Driven Dispersion (March 30/31)
- Remote Detection of Disease (May 2nd & 3rd)
- Computing and Cross-Cutting Topics (May 17th & 18th)

Development Phase of NVBBCC—Pilot Study

Focus on Anthracnose impacting Sorghum, a major potential bioenergy crop

Representative of many fungal diseases of important crops, including

switchgrass and corn

Transmitted by spores (Colletotrichum sublineola)

- Spore germination dependent on moisture and temperature
- Commonly found in Southeastern USA
- Outbreaks can reduce crop yields >50%
- Sorghum strains vary in resistance/susceptibility to infection

Collaboration with Texas A&M and USDA

NVBBCC studies of Anthracnose of Sorghum

- Molecular interactions of sorghum resistant factors with fungal effectors
- Tomographic imaging plant cells infected by C. sublineola
- Field studies of infected vs uninfected crops, using drones
- Establish pipeline for sharing materials with TAMU
 - USDA permits for shipping/receiving spores
 - Local approvals (IBC)
 - Containment protocols and infrastructure

Pilot study will inform the design of an effective NVBBCC

NVBBCC Development Phase—Initial Investments

Extend relevant resources and capabilities at BNL

- Bioimaging
 - Purchase cryo-FIB for cryo-ET analysis of disease mechanisms
 - Operated as part of user facility—pathway for supporting other users studying plant diseases
- Atmospheric sampling and remote detection of Sorghum
 - Purchased drones
 - Collaborative project with TAMU and UIUC
- Data science
 - Purchased computing infrastructure and software to manage data via SciServer
 - Establish computing platform to support BRaVE efforts across the DOE NL complex

Conclusion

- Community input and lessons learned from anthracnose pilot study will be captured in a Roadmap for design of the NVBBCC
 - Delivered to DOE by FY24Q1
- NVBBCC integral to DOE-BRaVE effort
 - capabilities and expertise can be pivoted to broader spectrum of biothreats.

Acknowledgments

University collaborators

BNL Leads

Andrew Leakey (UIUC)

Martin Schoonen (PI)

William Rooney Louis Prom (TAMU)

Qun Liu (Biomolecular characterization)

Alistair Rogers (Detection/sampling)

Clint Magill

Robert McGraw (Assessment)

John Shanklin

Kerstin Kleese van Dam (Computing platform)

Shantenu Jha

Frances Alexander

Funding: DOE Biological and Environmental Research

