Jim Risser, Krenar Shqau, Devin Dickson, Mike Heinrichs March 30, 2023

Optimizing the Tier 2 Carbon Capture Process

2023 Climate Conference Abstract #141, Session B8

Tier 2 Carbon Capture is critical to Climate Resilience

- Tier 2 sources comprise ~90% of the addressable CCUS sources
 - Fossil-fuel power generation
 - Cement, steel, chemical, ... production
 - Hydrogen generation
- DOE Industrial Carbonization Roadmap:
 - "Industrial CO2 capture capacity needs to increase substantially and at an unprecedented rate in a future with CCUS as a meaningful decarbonization approach."
 - "CCUS technology could also benefit from ... better process designs to bring higher efficiency levels, lower costs, and lower material consumption or waste production."

Opportunities to make Tier 2 Capture viable

- Current process for CO₂ capture at industrial sites
 - Amine absorption: Absorbing column > desorption of CO₂ > amine regeneration
 - High temperature (~120°C) for desorption results in excessive energy cost.
- Alternative processes have inherent disadvantages
 - Adsorption Low sorption energy materials reduce regeneration temp but also CO₂ capture efficiency
 - Membrane Low pressure of flue gas (~1atm) and relatively low CO₂ concentration (~15%) limits effectiveness
 - Both require flue gas drying prior to capture
- Amine Absorption Process Improvements
 - Implement design features to improve regeneration efficiency
 - Alternative sorbent solutions reduce regeneration temperature but capture efficiency is a challenge

Goal of this Research: Develop and implement novel desorption column media that **significantly reduces regeneration temperature**, and hence energy, of the desorption process; while **maintaining capture efficiency**

Battelle's approach to reducing desorption energy

- Apply a multi-scale, nano-structure surface onto desorption column random packing material or regenerator trays
- Allows desorption temperature to be reduced to ~80°C.
- Benefits of reduced desorption temperature
 - Significant energy savings
 - Extended amine solution life
 - Reduced capital costs
- Critical Parameters
 - Interfacial Energy affects nucleation as well as bubble growth and detachment
 - Surface Morphology (e.g. nano-pits, roughness) affects nucleation
- Technical Challenges
 - Selection of the best architecture/media for the tower
 - Developing an effective anodization process for packed-bed material
 - Thermal effects of using aluminum in a desorption tower

Experimental Results - Surface characterization

- "Porous anodized aluminum surface" (aka AAO) – oxide materials formed by anodizing aluminum in the presence of an acid create a uniquely structured surface identifiable by regular porosity
- Coating structures were assessed by
 - Scanning electron microscopy (SEM)
 - ii. Laser scanning microscopy (LSM)
 - iii. Raman spectroscopy
- Surface properties of the AAO (see table) promote wicking and acceleration of the release of CO₂

3D optical profilometer

SEM images

Properties	value
СА	< 5°
Ra (roughness)	2.8 um
Rz	27 um
Efficiency	87%

Optical Images

Experimental Results

- Pour tests conducted with AAO coupons to determine desorption efficiency at 40°C, 80°C, 100°C
- Test coupon temperature maintained using heat tape
- CO₂ in amine solution measured with a Chittick apparatus

Coupon	Temp	Efficiency	CA (°)	Roughness
Bare 1xxx	80°C	15 ± 10	95 ± 3	Ra < 0.4 um
AAO – 1xxx	100°C	15 ± 10	< 5	Ra ≈ 2.8 Rz = 25 um
	80°C	87 ± 10		
	40°C	45± 10		
AAO – 6xxx	80°C	78 ± 10		Rz = 19 um

The multi-scale-structure obtained through anodization enables effective CO_2 desorption at 80°C and atmospheric pressure.

Desorption Process Economic Analysis

- Modeled desorption process to determine reboiler energy for column operation at 120°C (current practice) and 80°C
- Analysis indicates that first-pass energy requirements are reduced by approximately 90% for the base system
- Planned enhanced modeling will include secondary cost ٠ savings:
 - Reduced capital costs
 - Extended amine lifetime

Future Work

- Prototype desorption column fabrication and testing – prove that we can desorb at low temperature
- Supporting analyses
 - Thermal FEA,
 - Enhanced performance and economic analysis
 - Scale-up requirements analysis
- Long-term stability of material
- Scale-up and design optimization

