

Cleaning up Climate Change Carbon Dioxide Removal and Practical Climate Resiliency

Jessica N. Cross, Ph.D. NOAA Pacific Marine Environmental Laboratory Seattle WA

> March 2023 ICR23, Columbus, OH

2009: 389 ppm

The Ocean is an asset to our atmosphere.

© Global Carbon Project

A key consequence of that service is ocean acidification.

2015: 401 ppm What do we do?

What can we do?

INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

Global Warming of 1.5°C

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

Can Kelp Help?

It will be very difficult to double the land and ocean sinks for carbon.

Doing so will require 6% annual growth per year in negative emissions, in addition to emissions reductions. 2020: 413 ppm

"I want to make Alaska the mariculture capital of the world."

-Gov. Dunleavy

How can we remove enough carbon from the atmosphere?

Can CDR be safe, sustainable, and fair?

There are many ways to remove carbon from the atmosphere

Some have important costs, such as high energy, water, or land use requirements.

A diverse portfolioand the right incentivescan limit these pressures. SUSTA DEVELOPI G

Cheap, effective, and durable methods could have the highest potential impact.

Paltry Offering

Less than 5% of offsets actually remove carbon dioxide from the atmosphere

One key challenge of CDR implementation is measuring the actual removal part.

This is especially true for ocean or marine CDR, and this is reflected in market settings.

Why is it so difficult to measure carbon removal?

If we're going to learn how to measure CDR, we need new tools.

Current NDAA Assets		Development Necessary for CDR	Potential Impact of new NOAA CDR Research
Observing Networks	Global Atmospheric and Ocean Observing (e.g., GGGRN; GO-SHIP; Arge; GOA-ON)	Fill regional gaps; develop deep-sea monitoring network	NDAA continues to verify global Carbon Budget at necessary scales to identify CDR
	Local Atmospheric and Ocean Observing (e.g., CarbonTracker, 1005 RAY, NOA-ON)	Expand to many more sites for comprehensive local-scale monitoring at CDR installations	NOAA verifies, monitors impact of single CDR projects
	Technology Development Programs (e.g., DART; ITAE)	Early investment and partnerships with industry, other agencies	NCAA catalyzes global CDR monitoring and verification potential (e.g. trading accredited offsets)
Modeling, Scaling, and Projection of CDR Pathways	Earth System Models (e.g., CMIP6) and regional models (e.g., ROMS)	New CDR-specific modeling packages	NCAA projects near-term and long term CDR impacts to identify changes, risks, cobenefits for earth system
	Process study models	Development of virtual "testbedic" for CDR research	NCAA designs quality process studies for investigating the impacts of experimental CDR methods
Environmental Impacts	National ecosystem monitoring programs	Expand to many more sites for comprehensive local-scale monitoring at CDR installations	NOAA verifies, monitors environmental impacts of single CDR-projects
	Ecosystem modeling	Modify ecosystem models to evoluate the effect of CDR	NDAA projects impacts of CDR on marine ecosystems
	Laboratory research	Design and implement CDR- specific experimental studies for key species	NOAA identifies environmental risks, cobenefits of single CDR projects
Decision Support	Data management and synthesis (e.g., NCEI, OCADS)	Data preservation, interoperability and compatibility, discovery and access, quality control and synthesis	Bridging the gap between observations and subsequent research, Milv efforts to account for carbon cradits, and decision support based on these data
	Marine Spatial Planning (e.g., NCCOS, OCM)	Apply new CDR knowledge using existing spatial planning tools	NOWA resolves use conflicts, orthances decision support for CDR implementation requests
	Aquaculture Research, Development, and Policy	Development of sustainable farming methodology; expanded permitting support.	NCAA maximizes sustainable coastat marine services
	Collaborative Research and Stakeholder Engagement (e.g., SeaGrant)	Improve pathways for stakeholder participation in NCIAA COR Research	Research reflects stakeholder rigeds
	Blue Carbon Conservation (e.g., CCAP)	Fill local gaps; conserve existing natural carbon storage sinks	NCAA protects and restores existing natural carbon sinks

Creating the right space for CDR to flourish will require new models for research and partnerships. Safe, sustainable, fair CDR will keep people at the forefront.

Guiding principles for just carbon removal

2.

The benefits of carbon removal solutions must be equitably distributed.

1.

- fits of moval must bly d.

3.

Safeguards are needed to ensure adverse impacts are not borne by disadvantaged communities.

4.

The socioeconomic consequences and distributional impacts of carbon removal solutions need to be evaluated alongside their technological and economic attributes.

Carbon180

5.

Carbon removal is seeking to address a challenge that is both local and global, and therefore should incorporate justice across temporal and spatial scales.

That means we need You.

2022: 417 ppm...

...Still not too late.

