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Main Topics Today

 If you design it, we will build it, maybe…

 Monitoring remedy performance versus monitoring cap integrity

 Seismic risk and long-term cap integrity

 Financial assurance and regulatory acceptance

 Probabilistic modeling of long term monitoring cost



In-Place Capping of  
Contaminated 
Sediment… 

 Caps can offer a sustainable 
solution, but questions about 
performance remain

 Capping is generally perceived to be 
lower cost than removal, but these 
cost may be converging 

 What are the PRP exit criteria for 
capping? How do we gain confidence 
that caps will last, in some cases 
forever?

 How do we evaluate questions about 
long-term liability and use 
impairment for land owners

 When is capping a beneficial use 4



You design it, we 
will build it, 
maybe…

 Several factors effect the performance and 
longevity of a cap

 Design is where it starts 

 Constructability issues can effect the final cap 
durability

 Contractor is building what is designed



You design it, we 
will build it, 
maybe…

Factors to consider for a Bullet Proof Cap Materials
 What’s in the design vs. what’s available

 Exotic materials 

 Amendments and placement

 Organic content, if there are fines, they will be gone

 Just because its available does not mean there is 
enough

Construction can have challenges
 Caps don’t do well on steep slopes 

 Hard to place and maintain a cap on a 2:1 slope

 “Build the wedge.”

 High flows

 Soft sediment

Where are you building it?

What are you building it with?

Acceptance tolerances can become difficult

Amendments



You design it, we 
will build it, 
maybe…

 Amendments and Design

 Mixing and placement problematic

 Validation of material placed

 Samples based on average

 Placement tolerances

 Needs to be on an average

 Cores VS. Survey

 Armoring

 Average tolerance

 Hard to meet a 6” tolerance placing 12” stone

 How do you fix it if it breaks? That’s the big 
question.

 What’s broken?

 Why is it broken?

 Big break or small



Distinguishing remedy and cap 
performance
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 Monitoring remedy success typically focuses on attainment of Remedial Action 
Objectives (RAOs), e.g.:
 Monitor PCB levels in fish to evaluate human health risk reduction 

 Monitor PAH concentrations in sediment to evaluate infauna exposure reduction

 Sediment caps are typically ONE element of a remedy; other elements:
 Source control

 Potential recontamination from cleanup levels < “background”

 Remedies may not meet RAOs even when caps perform as designed
 Inadequate identification of sources, exposure pathways, receptors

 Uncertainty in risk modeling that establishes chemical isolation specs for COC 
breakthrough   



Cap performance – basis of design 
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 Capping objective: physical and chemical isolation to prevent exposure of 
receptors to chemicals of concern (COCs)

 Physical isolation design elements: thickness of cap, armoring needs, habitat 
features (loss vs restoration, soft-bottom vs hardscape)  

 Chemical isolation design elements: retarding COC breakthrough (advection, 
diffusion) in pore water (PW) above the reactive cap layer

 Monitoring cap overall performance

 Cap Integrity: does it maintain adequate physical isolation? 

 Cap Performance: does it maintain isolation of COCs from receptors? 

  



CapSIM models COC breakthrough

 Evaluate chemical isolation by monitoring breakthrough in PW
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What Does Failure of a Sediment Cap 
Look Like?
 Force based design or deformation-based design?

 Limit Equilibrium Factors of Safety can yield deformations 
of several feet

 How to limit deformations to acceptable values

 How to replace deformation limits with allowance for repair 
and maintenance?
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Seismic Resiliency of Sediment Caps
 Design standards (or lack thereof)

 Performance criteria (i.e., What constitutes Failure)

 Design life

 Facility (cap) importance
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 “Caps will also factor in appropriate earthquake design elements for contingency level 
events.” 

 “Engineering Considerations must include the currents, storm surges, and earthquakes.  
Installation of structures must allow for limited deformation in the event of an 
earthquake.”

 “Appropriate testing and analysis shall be conducted to evaluate the stability of the 
waste structure under seismic loads.”
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Long-Term Financial Assurance for Caps 

What circumstances may 
require financial assurance?
 Future event-based failures of 

engineering control

 Future removal of impediments 
(i.e., bridge footings, dams) 
after investigation/remediation

 Monitoring and maintenance

 Third-party damages to cap
 

What response action costs 
to consider?
 Assessment of extent of 

“failure”

 Design, permitting, 
procurement

 Mobilization and repair 

 Maintenance 



Long-Term Financial Assurance for Caps 

Approaches for 
estimating costs
 Percentage of installation costs

 Cost to dredge all

 Flat rate based on small versus 
large site

 Probabilistic modeling

 Depends on the responsible party 
and net worth test

Factors that might affect 
financial assurance 
requirements
 Bio-accumulative versus 

non-bioaccumulative contaminant

 Do consumption advisories affect 
financial assurance 

 Discharges on to the cap

 Conservatism of cleanup goals

 Navigational versus non-
navigational

 Enhanced cap design parameters 
i.e., betterment



Need for Greater Regulatory Advocacy 

Lower Environmental 
Footprint
 Less energy use 

 Lower construction impacts on 
nearby communities

 Opportunity to beneficially use 
capped resource (new habitat) 

 Opportunity to integrate caps into 
upland infrastructure 

Reduce Long-Term Cap 
Risks
 Work with designers to ensure 

long-term cap integrity 

 Understand the range of potential 
flow conditions and include 
adequate factor of safety

 Consider management and repair 
requirements, as opposed to a 
need for replacement 
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Probabilistic Financial Modeling – Cap Maintenance and Repair

Purpose: Quantify the long-term financial risk associated with cap maintenance and repair.

Primary Challenge: Gaining regulatory/industry understanding that representative models can 
be developed 

Provides Basis: For establishing financial assurance

Representative Models: Should be location and site-specific using inputs from qualified and 
calibrated subject matter experts

Financial Assurance Considerations: State requirements, ASTM Guidance, Others 
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Probabilistic Financial Model Elements
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Financial Model Output Results
Basis for Establishing Financial Assurance



Thank you


