

Evolution of US hurricane risk in a changing climate

March 29th 2022

Karthik Balaguru Wenwei Xu David R. Judi L. Ruby Leung

PNNL is operated by Battelle for the U.S. Department of Energy

Quantifying the risk from Tropical Cyclones

Tropical Cyclones (TCs) or hurricanes are the deadliest and costliest natural disasters, including in the US.

On average, 1-2 hurricanes make landfall over

landfall events during the satellite era is not

Using high-resolution dynamical models is

computationally expensive, and they are

associated with systematic model biases.

sufficient to derive probabilistic hurricane risk.

continental US each year, the number of historical

Costliest natural disasters in the US

• To address this, we are developing the **Risk** Analysis Framework for Tropical Cyclones (RAFT) Top 5, 7 in top 10 are hurricanes

Why use RAFT for risk analysis ? Pacific Northwest

1) A hybrid model: RAFT combines Physics, Statistics and Machine Learning to generate synthetic TCs. It is trained based on observations and can accurately represent salient features of TCs.

2) Suitability for risk analysis:

- a) Numbers Simulate large number of TC events making uncertainty quantification and risk assessment feasible.
- b) Accuracy Percentage of landfalling events (30%) is roughly consistent with observations (25%) and the simulated landfall risk for 51 selected cities is well-correlated with the observed (R-square 0.77)

3) Coupling with earth system models: RAFT can readily utilize output from models such as E3SM and address issues such as change in risk associated with a non-stationary climate.

RAFT: A Risk Analysis Framework for Tropical Cyclones

Physics-based synthetic TC Track Model

- Tracks propagate according to large scale wind and a beta-drift (Emanuel et al. 2006)
- Modified the method to use a spatially varying beta-drift, improved the model's ability to represent TC landfall (Kelly et al. 2018)

Neural Network based Intensity Model

- Multilayer Perceptron Model (MLP) with automated architecture and hyperparameter search
- Trained using global Statistical Hurricane Intensity Prediction Scheme (SHIPS) predictors from 1982-2018
- Two versions:
 - 24-hour model for operational forecast, which consistently outperforms SHIPS, DSHP, and LGEM (5-22%)
 - 6-hour model for climate studies (with 11 environmental variables as inputs)

24-hour MLP model evaluated in the North Atlantic basin

Xu et al. WAF (2021)

6

Coupling track model with 6-hourly intensity model

- Generated realistic intensities along synthetic tracks
- Reasonable TC lifetime maximum intensity distribution (a), the most intense synthetic event reaches Category 5 strength.
- The landfall probability based on synthetic TCs for 51 selected US coastal cities is wellcorrelated with the observed (b).

TC rainfall model

- Physics-based TC rainfall model (Zhu et al. GRL, 2013; Lu et al. JAS, 2018)
- TC rainfall is proportional to the upward vapor flux, estimated as the product of saturation specific humidity and the vertical velocity.
- The vertical velocity has 4 components to it
 - a) Frictional effect
 - b) Stretching effect
 - c) Topographic effect
 - d) Baroclinic effect

CMIP6 global climate projections

- Historical period (1980-2014) and future period (2066-2100)
- 8 CMIP6 models used:

GFDLCM4, CanESM4, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0, IPSL-CM6A-LR, EC-Earth3, CMCC-CM2-SR5

- Scenario SSP585:
 - Storyline dominated with mitigation challenges
 - Radiative forcing increase of 8.5 Wm⁻² by the year 2100

-90

-100

Ensemble mean changes in TC risk

- RAFT can realistically represent TC tracks, along-track intensities and rainfall.
- The framework has been combined with CMIP6 climate model output to determine the impact of climate change on TC characteristics and environment, and consequently the risk associated with them.
- RAFT projects an increase in TC risk for the US Gulf and Southeast coastal regions, and a decrease for the Northeast coastal areas. This is likely due to changes in the TC steering flow.
- RAFT can also be used to ascertain storm surge, inland flooding and their net effect • (compound flooding).

New Orleans after Katrina, 2005

Thank you!

Contact: Karthik.Balaguru@pnnl.gov