Water Risk Planning Tools for Decision Support in the Electric Power Sector

Jeff Thomas, EPRI Senior Technical Leader

March 29th, 2022

in f
www.epri.com
© 2022 Electric Power Research Institute, Inc. All rights reserved.

Acknowledgements

- Nalini Rao & Eladio Knipping EPRI
- Arturo Keller UC Santa Barbara
- Eric Hersh & John Menninger Stantec
- Robert Hawley & Shelby Acosta Sustainable Streams, Inc
- Power Company Advisory Committee

Teamwork makes the dream work!

Background

Issue

 Tools to manage water risk require sustained funding to integrate climate-based and regional assessments that inform adaptation and resiliency strategies.

Objectives

- Facilitate response to emerging water management stakeholder issues
- Integrate climate assessments into water supply/quality models
- Give insights on regional climate risks and adaptation strategies to support long range planning

Steps in the Analysis

Linking Research for Strategic Planning and Tactical Outcomes

Step 1a: Evaluate Hydrological Models

SWAT

- Hydrologic and water quality
- Detailed representation of actual land uses & mgmt. practices
- Applicable to many regions
- Can incorporate land use change in same simulation
- Can model extreme events
- Easily available with good support

WARMF

- Hydrologic and water quality
- Very good representation of actual land uses
- Applicable to many regions
- Can incorporate land use change in simulation in series
- Can model extreme events
- Available with good support

• MIKE SHE

- Hydrology
- Water quality requires additional programming
- Very good representation of actual land uses
- Applicable to many regions
- Need separate simulations for land use change
- Can model extreme events
- Available, with a significant monthly fee

EPCI

2020 EPRI Report: Evaluation of Hydrological Models for Climate-based Assessments (#3002019495)

Step 1b - Hydrological Modeling

Data Used

- GCMs selected based on best match of historical climate
 - GFDL ESM2 (USA)
 - Hadley GEM2 (UK)
 - MRI CGCM3 (Japan) or Can ESM2 (Canada)

- IPCC projections
 - RCP4.5 (mid-level emissions)
 - RCP8.5 (high-level emissions)

Downscaling method – Dynamic vs Statistical

Step 2a - Characterize Risk

Qualitative Risk Identification and Characterization

31 risks identified in total

Step 2b – Quantify Risk

© 2022 Electric Power Research Institute, Inc. All rights reserved

Step 3a – Identify Adaptation Strategies

- San Juan River Basin
- Wabash River Basin
- Allegheny River Basin

- Optimization of Existing Storage
- Bankfull Wetlands
- Beaver Reintroduction
- Hand-Placed Logs

12

Step 3b – Quantify Adaptation Strategies

	~250k m ³	~1.25M m ³	~25M m ³	~120M m ³
	~\$1.5M Bankfull Wetlands – plann	~\$7.5M	~\$150M m ³ (\$4.75/CY) with free topsoil haul o	~\$750M
Jak	~\$100k Beaver Reintroductions -	~\$500k planning-level cost of \$2,500 per i	~\$10M	~\$50M ating ~6,200 m³ (~5 acre-ft) of storage
A.	~\$15M Hand-placed Logs – plann	~\$75M ing-level cost of \$5.75/m (\$1.75/ft)	N/A with volunteer/student labor and prol	N/A

Existing Reservoir Optimization - feasibility and cost will vary by watershed/reservoir

Products - EPRI Reports

- Evaluation of Hydrological Models for Climate-based Assessments (#3002019495) 2020
- Modeling the Potential Hydrological Implications of Climate Change for the Power Sector: Guidance on the Implementation of Hydrologic Models (#3002023102) - 2021
- Potential Water-Related Risks to the Electric Power Industry Associated with Changing Surface Water Conditions (#3002017809) – 2020
- Quantifying the Potential Impacts of Water-Related Risks Associated with Climate Change to the Power Industry (#3002021684) - 2022
- Minimizing Risks to the Electric Power Industry from Changing Surface Water Conditions (#3002017808) 2020
- Conceptual Watershed-scale Opportunities to Minimize Risks of Changing Surface Water Conditions A Pilot Analysis of Three River Basins (#3002021683) - 2021

Manuscripts in progress

Together...Shaping the Future of Energy®

Jeff Thomas, jthomas@epri.com