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Carbon Sequestration

Figure from Balch et al., 2017

• Ensures CO2 storage

• Protects valuable assets

• Provides assurance to community

Importance of Monitoring

Geochemical Monitoring for MVA

• Utilizes existing infrastructure

• Employs developed tools

• Provides source attribution
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Field Area

• CO2 EOR as an analog

• Sampled oil field in Permian Basin, West Texas

• June 2013 to April 2018

• Eight field sampling events

• CO2 EOR: October 2013

• One pre-CO2 injection event
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Field Area

• Developed analytical process for fossil fuel 

wastewaters
• Miller et al., 2022

Samples

• Ogallala Fm. groundwater

• Santa Rosa Fm. groundwater

• San Andres Fm. produced water
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Results: Producing Formation

• Focus on alkalinity and dissolved 

inorganics

• Following CO2 Injection

• Increases in certain parameters

• Statistical significance
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Results: Producing Formation

• Statistical analysis

• Generated prediction intervals

• Significant change: alkalinity, TDS, Na+, Cl-, 

and SO4
2-

• Interpretation

• CO2 injection caused significant changes in 

produced water parameters

• However, CO2 injection did not result in 

significant carbonate dissolution 

• Therefore, reservoir integrity was preserved 

during injection
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Results: Groundwaters

• Ogallala and Santa Rosa Fm. groundwaters
• Did not see significant change 

following CO2 injection
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Results: Groundwaters

• Ogallala and Santa Rosa Fm. groundwaters
• Generated hypothetical mixing curve

• Scenario: produced water migration 
into Santa Rosa Fm.
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Application of Field Results: GILD

• Problem definition
• Need for a low-cost, easily 

implementable monitoring 
strategy for carbon storage 
reservoir leak detection

• Proposed solution
• Geochemically 

Informed Leak 
Detection (GILD)

Wellbore to 
intermediate 
formation

Wellbore to shallow 
groundwater

Geologic conduit 
to shallow 
groundwater

Geologic conduit to 
intermediate 
formation

Well to shallow 
aquifer

1

Leakage Pathways

2

3

4
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GILD Overview

Geochemically Informed Leak 
Detection (GILD)

1) Assess fluid chemistry 
and mineral compositions 
of monitoring formation

2) Simulate leakage events 
with a geochemical 
reaction path model

3) Identify CO2 leakage with 
a Bayesian Belief Network 
(BBN)

Bayesian Belief Network (BBN)
• Decision support tool
• Probabilistic inference 

from multiple sources 
of evidence

• Application for leak 
detection: given 
monitoring 
parameters, compute 
the probabilities of 
the presence of 
leakage
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Bayesian Belief Network (BBN) for Leak Detection 

• Upstream node
• CO2 added concentration 

• Arrows
• Causal effect

• Downstream nodes
• Monitoring parameters

• Bars of each node
• Probability of a particular range

• Conditional probability
• Probability of downstream given 

upstream

• Purpose 
• Back inference 
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BBN Setup for Leak Detection

Identifying CO2 Leakage: Bayesian Belief 

Network

Model Output

Possible Outcomes 
from Potential 

Leakage

Observed 
Fluid 

Network 
+

Probability of CO2 
Leakage

Sensitive Monitoring 
Parameters

Response 
Functions

Errors

• Observation parameters

• Inorganic geochemistry

• Na+, Ca2+, Mg2+, K+, Cl-, SO4
2-, Br -, 

alkalinity as mg/L HCO3
-

• Analytical techniques

• Fit response functions

• Identify sensitive parameters

• Include uncertainty

• Predict possible outcomes from potential 
leakage

• Compare with observed fluid network

• Compute probability of CO2 leakage
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Construction of BBN-Response Functions & Sensitive Parameters

• Response functions 
• Output of the geochemical model

• Relationship of ion concentrations 
(mol/kg) and CO2 added 
concentrations (mol/kg)

• Sensitive Parameters
• Selection Criterion

• Monotonic relationship
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Application of BBN-Combining Evidence

• Evidence from high 
HCO3 and low SO4
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Conclusions

• Geochemical monitoring provides insight into groundwaters and target formation 
reactions

• No significant dissolution of storage reservoir
• No produced water migration detected in groundwaters 

• Geochemical-statistical model (GILD) can provide CO2 leakage detection via robust 
statistical analysis

• Current model applies user input via licensed software and researcher knowledge
• Goal is to create standalone version that groundwater observers can use 
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Field Sampling

Fluid from the well (e.g. oil, gas condensate, produced water, 

H2S gas) flows into the carboy and excess gas flows out.
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Construction of BBN-Regression Results

• Mean-predicted value from the 
response function for each CO2
level

• SD-standard deviation of 
residuals (geochemical model 
output-predicted values)  

• Ion concentration-normally 
distributed with mean and SD
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