3/30/2022

Liam Boire Systems Engineer

A Multi-Agent Approach for Water-Power Resilience Modeling:

A Western Irrigation District Jeopardized by Drought

Contributors: Dr. Lionel Toba Shiloh Elliot CON-22-66401

Background

- Climate change and regional droughts pose an existential threat to many western farmers
 - Geographic redistribution of precipitation
 - Increased evaporation from reservoirs, canals, and fields
 - Changes in timing of seasonal and historic weather patterns
- Irrigation Districts
 - Own water rights, diversion facilities/infrastructure
 - Distribute water to district members
- Case-study Irrigation District
 - Features of multiple irrigation districts conglomerated to single model
 - Designed to operate like a real irrigation district

Case-Study Irrigation District

- Reservoir 95,000 Acre-feet active storage
- Major Canals & Laterals 120 miles
- 100,000 acres of irrigated farmland
- Several pumps
- Energy mix local hydropower, wind, external purchased fossil fuel

Methodology

- Rule-based water/power resource management system
- Multi-agent system model
 - System components modeled as agents, which interact with each other based on pre-defined rules
- Water system components
 - -Reservoir, canals, laterals, pumps, water demand
- Power system components
 - Generation sources, distribution components, power demand
- Crop yield UN FAO crop coefficient method

Performance (Hypothetical Baseline)

- Provides a comparison for scenarios
- Conditions:
 - Current climatic conditions
 - No drought
- Results:
 - All water demand met
 - Farmers have typical yield
 - Hydro composes 45% of energy mix

Share of hydro in energy mix, baseline

Performance under Drought (80% of average flows)

Irrigation Modernization efforts

- On-going, multi-faceted effort to revitalize US irrigation infrastructure
- Reduce water loss to seepage and evaporation, reduce energy usage of pumps, reclaim energy through hydro
- Examples include installation of
 - In-conduit hydropower
 - Pressurized pipes
 - Drip irrigation

Photo credit: INL

Performance with Irrigation Modernization (drought)

- Climate and drought problems aren't going away any time soon
- Treat the "symptoms" while waiting for systemic root-cause solutions
- Irrigation modernization solutions are demonstrated as effective
- Cost and engineering analysis is required (these infrastructure upgrades can be expensive, see IrrigationViz tool¹ for detailed cost-benefit analysis)

Future work

- Include temperature effects on crop yield and increasing evaporation
- Analyze other mitigation measures (in-conduit hydro, optimized scheduling)
- Capture cost and preliminary engineering analysis (IrrigationViz)
- Conduct additional real-world case studies for validation and impact

Acknowledgements

- DOE Water-Power Technologies Office
- INL Providing the support and environment to engage in valuable research
- Team
 - Dr. Lionel Toba (lead modeler)
 - Shiloh Elliot (GIS and Data analyst)
 - Tim McJunkin (PI)
 - Thomas Mosier (WPTO Relationship Manager)

Contact information:

Liam.Boire@inl.gov

DanhoAngeLionel.Toba@inl.gov

Citation for similar model:

Toba, Ange-Lionel, Liam Boire, and Timothy McJunkin. 2021. "Integrated Water-Power System Resilience Analysis in a Southeastern Idaho Irrigation District: Minidoka Case Study" *Sustainability* 13, no. 19: 10906. https://doi.org/10.3390/su131910906

14. Discharge

- 15. Simulation Process Overview
- 16. UML diagram
- 17. Data inputs table

Backup Slides

Example of Discharge (Typical vs Drought)

Simulation Process Overview

BACKUP SLIDE

Data Input	Definition
Water and power demand database	Data about the water and power demand per geographical zone and season. Demand data are determined as explained below.
Water and power source database	Data about the water and power sources per geographical zone and type. Data include factors specific to sources (water flow, dam heads, power mix, etc.)
Water pump database	Data about pumps energy requirement and location from example irrigation districts
Wind database	Data about wind speed, locations, and wind turbines

BACKUP SLIDE