Climate Change, Environmental Justice, and Public Policy

Measurement and Evaluation of Stressors on Multiple Dimensions of Wellbeing

Dave Anning

Ted Tomasi

Julia Bouzaher

March 30 2022

Battelle Conference on Innovations in Climate Resilience – Columbus, OH

Quantifying EJ: Two Approaches

- > Measuring the amount of inequality across in the distribution of outcomes across dimensions of wellbeing
- Aggregating individual wellbeing into an indicator of social wellbeing for policy-analysis

Example: Urban Setting

People or Populations

Achievment Matrix				
	Р	P H A		М
А	36	310	180	37
В	1	280	100	90
С	3	270	75	15
D	30	270	225	33
Е	50	350	330	30
F	20	340	330	150

Dimensions of Wellbeing

P: Acres of parks within 10 minutes

H: Annual days below 90 degrees F

A: Annual days with PM 2.5 below 15 $\mu g/m^3$

M: Annual income in thousands of US dollars

How Should We Evaluate this Matrix?

How Should We Specify these Indicators?

Measuring Inequality

Axiomatic Approach to Measurement of Inequality and Welfare

- > List desirable properties of a measure (axioms)
- > What computational formula(s) satisfy these axioms?

Logical/Operational Axioms

People or Populations

Achievment Matrix					
	Р	H A		М	
Α	36	310	180	37	
В	1	280	100	90	
С	3	270	75	15	
D	30	270	225	33	
Е	50	350	330	30	
F	20	340	330	150	

Dimensions of Wellbeing

Changing measurement scale doesn't alter assessment
Replicate the population, measure doesn't change
Small change in an achievement, measure doesn't jump
If A is better than B, then A+X is better that B+X

Analytical Axioms

People or Populations

Achievment Matrix				
	Р	Н А		М
Α	36	310	180	37
В	1	280	100	90
С	3	270	75	15
D	30	270	225	33
Е	50	350	330	30
F	20	340	330	150

Dimensions of Wellbeing

Measure can be disaggregated across people

e.g. age, ethnicity, time periods, etc.

Measure can be disaggregated across dimensions

e.g. social, infrastructure, health, under auspices of an agency

Ethical Axioms

People or Populations

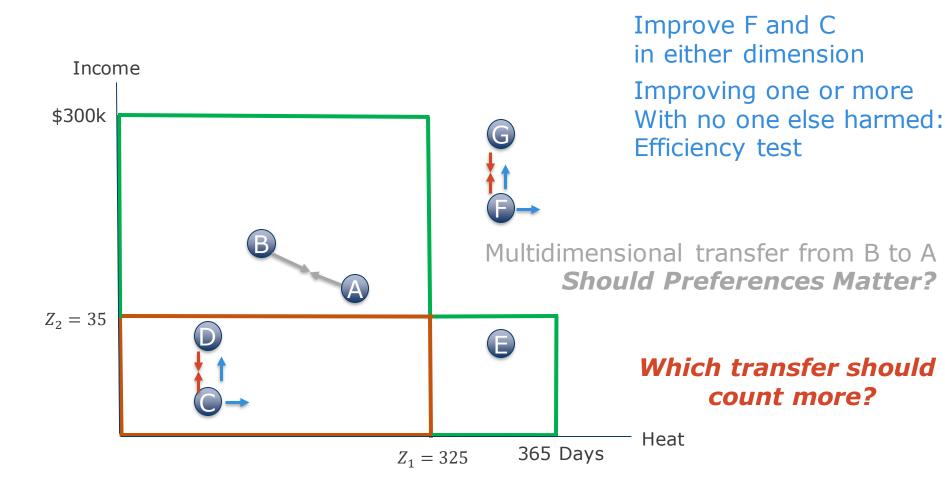
Achievment Matrix					
	Р	Н А		М	
А	36	310	180	37	
В	1	280	100	90	
С	3	270	75	15	
D	30	270	225	33	
Е	50	350	330	30	
F	20	340	330	150	

Dimensions of Wellbeing

Anonymity

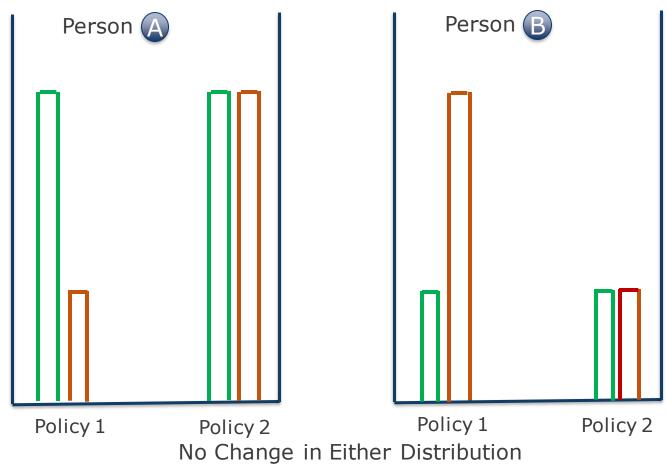
Switch all positions between two persons, measure does not change

Efficiency


Improve 1 person, all others no worse off, measure goes up

Equity

Transfer from richer to poorer, measure goes up Correlation Increasing switch


How Should EJ Measure Respond?

Correlation Increasing Switch

Income Low Heat Days

Is A Better Off and B Worse Off Under Policy 2?

Correlation Increasing Switch

- > Depends on correlations across dimensions
 - Statistical analysis
- Depends on whether <u>dimensions are complements or substitutes</u>
 - Cumulative risk assessment
- > May depend on preferences
 - People have the same preferences in poverty and inequality measures

Environmental Welfare

Welfare-Based Approach

	Р	Н	А	М	
А	36	310	180	37	$U^A(x_A)$
В	1	280	100	90	$U^B(\mathbf{x}_B)$
С	3	270	75	15	$U^{C}(\mathbf{x}_{C})$ $U^{D}(\mathbf{x}_{D})$
D	30	270	225	33	$U^D(\mathbf{x}_D)$
Е	50	350	330	30	$U^E(x_E)$
F	20	340	330	150	$U^F(x_F)$

- > Look at each **row** of matrix
- **>** Assign a well-being number $U^i(x_i)$
 - Aggregates across dimensions for each person
- Social Welfare Function $W(U^1, U^2, ..., U^N)$
 - Aggregates across people, accounting for inequality

Welfare Approach

- Increase 1 person, everyone else unchanged, then welfare goes up (efficiency)
- Multi-dimensional transfers / correlation increasing switches included (equity)
- Can respect individual preferences about how persons view their own well-being (use wellbeing function U^i)
- > Can deal with differences in preferences across populations

Take Home Message

The Axiomatic Approach

- > There exist **inequality** measures that meet all but efficiency
- > Welfare measures can meet all axioms
 - Trade offs between equality and efficiency
- If invoke all the logical/operational axioms, plus anonymity, plus transfer, then inequality measure is
 - $I(x) = \frac{1}{\alpha(1-\alpha)N} \left[\sum_{i=1}^{N} \left[\frac{x_i}{m(x)}\right]^{\alpha} 1\right]$ where α governs sensitivity to inequality
 - W(x) = m(x)[1 I(X)]