Practical Guidelines, Integrated Metrics, and Statistical Methods for Quantifying Carbon Sequestration in Rangeland and Agricultural Soils

K.L. Walker, P.E., P.G., GSI Environmental Inc.

B.Y. Li, PhD, P.E., GSI Environmental Inc.J.A. Connor, P.E., P.G., BCEE, GSI Environmental Inc.K.N. Cibor, GSI Environmental Inc.D. Valerio, BCarbonM. Gonzales, BCarbon

30 March 2022

Battelle Conference on Innovations in Climate Resilience

Carbon Sequestration Potential in U.S. Grasslands

"In total, US soils (including cropland, grazing and forest land, land conversion, and other land use) have the potential to sequester an estimated 288 million MT C per year."

- Chambers et al. 2016) [emphasis added]

How does Nature-Based Carbon Capture Work?

Change in Land Management

- Minimize disturbance
- Maximum Biodiversity
- Keep it Covered
- Regenerative Agriculture
- Include Animals
 - Rotational Grazing

Image from Ontl, T. A. & Schulte, L. A. (2012) Soil Carbon Storage. Nature Education Knowledge 3(10):35

GSI

ENVIRONMENTAL

Carbon Credit Marketplace

BCarbon Protocol

Testing-Centric Monitoring, Recording, and Verification Protocol

BCarbon Crediting

Initial measurements, interim projections, final measurements

Signal and the Noise

But how do we demonstrate certainty with variable data?!?

Soil-carbon content

Traditional Statistical Approaches

Initial

Final

Comparison of Statistical Approaches

Difference in Means Approach

Traditional Approach

Difference in Means Approach

Interim Crediting – Current State

1. <u>Address one pilot application</u> initially to resolve procedures and process before addressing multiple sites

2. Baseline Measurements useful "reality check"

3. <u>Not all properties</u> may have sufficient supporting scientific information at this time

4. Data provided must be sufficient to support 3rd party review and <u>certification</u>

5. <u>Quantification of uncertainty is essential!</u>

Future Research Needs

- > Predictive Models
 - > Indirect Indicators
 - > Biogeochemical models
- Data fusion and advanced statistical methods
 - > e.g., Bayesian framework
- Simplistic and uniform stratification approach -> spatially distributed estimate of SOC across landscape

KEY POINT: Any method must quantify uncertainty in order to support high-quality carbon credits for ultimate acceptance in the marketplace.

Kenneth L. Walker, Jr., P.E., P.G. Senior Environmental Geologist and Engineer 221 Norfolk Street, Suite 1000 Houston, TX 77098 713-522-6300 (office) <u>klwalker@gsi-net.com</u>

Bcarbon.org

IGSI ENVIRONMENTAL