CALL FOR ABSTRACTS

2020 CHLORINATED CONFERENCE: TECHNICAL PROGRAM SCOPE

Examples of anticipated presentation topics are listed below; use the numerical codes to reference topics you believe are the best match for your proposed presentation. This is neither a final nor comprehensive list. Abstracts are welcome on all relevant topics. Presentations will address the full range of technologies that can be used to remediate sites contaminated by chlorinated and other recalcitrant compounds. Risk, regulatory, and site management issues associated with these technologies will be discussed. The program will emphasize field applications, case studies, and site-closure approaches, but submissions on fundamental research and laboratory, pilot, and modeling studies are encouraged.

Remediation Technology Innovations
1a. Lessons Learned with In Situ Technologies
1b. Emerging Remediation Technologies
1c. Biological Remedies
1d. Monitored Natural Attenuation
1e. Abiotic and In Situ Biogeochemical Processes
1f. Phytoremediation/Mycoremediation and Plant Uptake
1g. In Situ Chemical Oxidation
1h. In Situ Chemical Reduction
1i. Thermal Remediation Design & Best Practices
1j. Heat-Enhanced Remediation
1k. Injectable Activated Carbon Amendments: Lessons Learned and Best Practices
1l. Other Physical/Chemical Remedies
1m. Advances in Amendment Formulations
1n. Innovative and Optimized Amendment Delivery Methods
1o. Combined Remedies and Treatment Trains
1p. Electroenhanced Technologies
1q. Zero Valent Iron Applications
1r. Horizontal Wells
1s. Permeability Enhancements for In Situ Technologies

Assessing Remediation Effectiveness
2a. Advances in Monitoring Injection Effectiveness (e.g., Radius of Influence)
2b. Applications of Mass Flux and Mass Discharge for Remedial Design/Optimization
2c. Estimating Cleanup Timeframes and Modeling to Support Site Closure
2d. Optimizing Remedial Systems
2e. Lessons Learned from Plume Containment
2f. Application of Sensors, the Internet, and Automated Data Collection
2g. Big Data, Data Mining, and Portfolio Optimization
2h. Assessing Performance and Cost of Remedies
2i. Setting Cleanup Goal End Points: When Are We Done?
2j. Assessing Remediation Effectiveness: Performance Assessment of In Situ Carbon-Based Amendments

Green and Sustainable Remediation
3a. GSR Best Practices and Case Studies
3b. GSR Metrics and Resiliency Evaluations
3c. Reusing and Revitalizing Contaminated Sites and Social, Ecological Considerations
3d. Impact of Climate Change and Sea Level Rise on Remediation Sites

Addressing Challenging Site Conditions
4a. Adaptive Site Management
4b. Risk Management Strategies
4c. Lessons Learned in DNAPL Source Zone Remediation
4d. Low-Permeability Zone Challenges and Case Studies
4e. Large, Dilute, and Commingled Plume Case Studies
4f. Surface Water/Groundwater Interactions
4g. Remediation Challenges in Extreme Environments and Remote Locations
4h. Radiological Issues
4i. Landfill Redevelopment and Management

Fractured Rock and Complex Geology
5a. Managing Remediation in Fractured Rock and Karst Aquifers
5b. Challenges and Considerations to Evaluate Technical Impracticability at Fractured Rock Sites
5c. Depositional Environments and Stratigraphic Considerations for Remediation
5d. Remediation Geology: Geology-Focused Approach to Remediation Site Management
5e. Modeling and the CSM

Petroleum and Heavy Hydrocarbon Site Strategies
6a. LNAPL Recovery/Remediation Technology Transitions
6b. In Situ Remediation of Petroleum Hydrocarbons
6c. Natural Source Zone Depletion
6d. TPH Risk Assessment and Metabolites
6e. Understanding and Managing Risks at LNAPL Sites
6f. Remediation of Heavy Hydrocarbons
6g. Perspectives on Plume Sequestration Technologies
6h. Manufactured Gas Plants
6i. Surfactant-Enhanced LNAPL Remediation

Emerging Contaminants
7a. Advances in the Analysis of Per- and Polyfluorinated Alkyl Substances (PFAS)
7b. PFAS Risk Assessment and Toxicity
7c. PFAS Site Characterization
7d. PFAS Remediation Advances and New Approaches
7e. Point of Use Treatment for PFAS: Technologies and Case Studies
7f. Energetics, Perchlorate
7g. Insensitive Munitions
7h. 1,4-Dioxane Remediation Challenges
7i. Other Emerging Contaminants
7j. PFAS Fate and Transport
7k. Pump and Treat for PFAS Remediation

Vapor Intrusion
9a. Chlorinated Compound Vapor Intrusion
9b. Vapor Intrusion Risk Assessment and Site Management
9c. Advances in Vapor Intrusion Investigations
9d. Vapor Intrusion Mitigation and Effectiveness
9e. Vapor Intrusion Preferential Pathways

Characterization, Fate, and Transport
10a. Conceptual Site Models
10b. Improvements in Site Data Collection, Data Management, and Data Visualization
10c. Groundwater Modeling Advancements
10d. Advanced Investigation Tools and Techniques
10e. High-Resolution Site Characterization (HRSC)
10f. Incremental Sampling for Characterization
10g. Risk Assessment Practices, Applications, and Benefits
10h. Risk Assessment and Bioavailability Considerations
10i. Advances in Monitoring and Assessment Techniques

Advanced Diagnostic Tools
11a. Innovative Monitoring and Measurement Tools
11b. Use of Advanced Molecular Tools for Site Assessment or Remedy Performance
11c. Compound-Specific Isotope Analysis
11d. Using Omic Approaches to Optimize Site Remediation
11e. Environmental Forensics
11f. Unmanned Systems for Remote Monitoring
11g. Innovative Sampling and Investigation Tools

Technology Transfer and Stakeholder Communications
12a. Advances in Technology Transfer
12b. Technology Verification
12c. Decision Analysis Tools for Environmental Restoration Applications
12d. Stakeholder Success Stories and Risk Communication
12e. Innovative Strategies and Approaches to Expedite Site Closure

International Environmental Remediation Markets
13a. Research and Development Projects and Practices
13b. International Regulatory Issues and Challenges
13c. International Market and Business Challenges