arrows arrow-right arrow-left menu search rss youtube linkedin twitter facebook instagram arrow-play linkedIn

Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

Scientific Reports · 6, Article number: 33807 · 2016
Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

Abstract reproduced under Creative Commons license.

Publications

Thank you for your interest in Battelle's publication,  {insert title of content}. Please note that Battelle expert publication articles are generally copyright protected by the publisher and may only be made available to potential clients and partners after Battelle has cleared them with the publisher.  If you are affiliated with an academic institution, they may be available to you through your institution.

If you are a potential customer or research partner, please fill out the below information and a Battelle Customer Experience representative will reach out to you regarding your requested publication. Please note that inquiries will be returned the next business day, but providing the publications may take more time.

Would you like to be contacted about this technology?
This field is required Would you like to receive updates from Battelle?



Please refer to our PRIVACY POLICY for more information.